

24A-1. $(-7.13+43.6) \times 4.45$--1= \qquad

24A-2. (80.8×83.6) - (1890 - 2460) ---2= \qquad

24A-3. $\quad(-5.39-\pi-1.21+0.336) \times(2.94)$
$3=$ \qquad
$24 \mathrm{~A}-4 . \frac{6280+8740-2010}{(-4.8)(2.59)(-4.35)}$ \qquad
\qquad

24A-5. $\frac{\{(778-677+1240) /(-521)\}}{\{(233)(-353) /(561)\}}$ \qquad
\qquad

24A-6. What is 4710 divided by 9.82 ?
$6=$ \qquad
$24 \mathrm{~A}-7$. What is the cube root of the result of 41.9 minus 17.8π ?
$7=$ \qquad

24A-8. A printer prints one page every 6 seconds. How many pages can be printed in 4 minutes?
$8=$ \qquad
24A-9. CIRCLE

Page 24A-2

24A-16. Marilyn wants a ham and cheese sandwich on rye. She goes to the grocery store to buy the ingredients: lettuce, $\$ 1.64$; tomato, $\$ 1.10$; ham, $\$ 5.71$; cheese, $\$ 3.10$; bread, $\$ 4.14$, mayonnaise, $\$ 1.46$, and relish, $\$ 2.78$. How much did she spend on groceries?

```\(16=\$\)
```

24A-17. There are 2 million car accidents each year. On average there are 232.8 million licensed drivers. Assuming on average that 1.79 cars are involved in an accident and no drivers are involved in more than one accident annually, what fraction of drivers are involved in a car accident annually?
$17=$ \%

24A-18. Half of the US 332 million population drink 12 oz of coffee daily. How many tanker trucks would this represent, if a tanker truck capacity is 7,500 gallons? \qquad $18=$ \qquad

24A-19.

$24 A-19=$ \qquad

24A-20.
RIGHT TRIANGLE

$24 \mathrm{~A}-20=$ \qquad

24A-21. $\quad \frac{1}{2.95+4.6}+\frac{1}{\pi-18.2}+\frac{1}{(5.37)}$ \qquad

24A-22. $\frac{-0.638+1 /(-1.39)}{1 /(0.589)+1.76}+\frac{1}{(-2.25)}$ \qquad

24A-23. $[-90.4+\sqrt{6130}]^{2} \times[487+1250]^{2} \times \sqrt{0.858 / 0.269}----------23=$ \qquad

24A-24. $(14.4)(5.26)+\sqrt{(779) /(6.41)}+[(0.54)(6.9)]^{2}$
$24=$ \qquad

24A-25. $\left[\frac{4.57+3.88+\sqrt{0.91 / 0.126}}{-8.84+8.39}\right]^{2}$ $25=$

24A-26. An uninflated spherical 15 in diameter balloon is inflated at a constant volume rate. If it was 6 in in diameter after 2 s , what is the total time required to completely fill the balloon?

24A-27. Liam's parents measure his growth annually. When he was 5 years old, his height was 3 ft 7.52 in . A year later, his height increased by 1.74 in . How tall was Liam on his 6th birthday? \qquad $27=$ \qquad
24A-28. The surface area of a sphere is increased by 4%. What is the percent change in volume? \qquad $28=$ \qquad

Total Surface Area $=3.21 \times 10^{6}$

24A-30.

Volume $=$?
$24 \mathrm{~A}-30=$

Page 24A-4
24A-31. $\sqrt{\frac{9.5}{\sqrt{59.1+58.7}}} \times\left[\frac{1}{(6.34-3.67)^{2}}+\frac{1}{(25.9+11)^{2}}\right]-----------31=$ \qquad
24A-32. $\sqrt{\frac{1 /(437-230)}{(110)(1.23+0.142)^{2}}}+\left(8.88 \times 10^{5}\right)^{2}\left(6.66 \times 10^{-15}\right)$
$32=$ \qquad

24A-33.

$$
\frac{[0.00208 /(0.839+0.897)+1 /(274)]^{1 / 2}}{(187+323)^{2} \times \sqrt{1740-(-844)}}
$$

$33=$ \qquad
24A-34. $\frac{(6.81)^{2}+\sqrt{987}}{\sqrt{(670)(-32.5)^{2}}}+\frac{\sqrt{\sqrt{(2670)(0.507)}}}{-607+685}$ \qquad
24A-35. $\frac{\left[\frac{(-0.0255+0.0026)}{(958+1340)}\right]^{2}+\sqrt{\frac{4.28 \times 10^{-21}+1.18 \times 10^{-20}}{\sqrt{0.22}}}}{\{(0.00553) /(0.0491)\}^{2}}$
$35=$ \qquad

24A-36. As a New Year's Resolution, on January 1, 2023, Charlie went on a diet. Her starting weight was 163 lbs. She averaged 3 lb loss each week.
What is the percent decrease in her weight on March 6 ?
$36=$ \qquad
24A-37. Ninety percent of Cobalt-60 decays in 17.48 yr. What is its half life? $37=$ \qquad
24A-38. A bulldozer scoop holds 2 cubic yards of dirt. Because the dirt is muddy, 15% of the dirt in the first scoop permanently adheres to the scoop, reducing its capacity. For the second scoop, 15% of dirt in the remaining capacity permanently adheres. This loss of capacity continues for subsequent scoops. What is the most dirt the bulldozer can deliver before the scoop is completely filled with mud?

24A-41. $\frac{10^{-(3.46-4.9)}}{0.348+0.229}$
$41=$ \qquad

24A-42. $\quad 0.0864 e^{0.832}+(0.0822) e^{-0.122}$
$42=$ \qquad

24A-43. $(-8.32) \log \{(\pi)(0.544+1 / 0.835)\}$
$43=$ \qquad

24A-44. $(2.25)^{3}+(12.4-2.5)^{2.11}$
$44=$ \qquad

24A-45.(deg) $\left\{(-0.0432) \sin \left(-76^{\circ}\right)\right\} \times\left\{(-0.0187) \cos \left(-130^{\circ}\right)\right\}------------45=$ \qquad
24A-46. A box can hold 850 rocks that are 0.73 in long. How many 0.03 in long grains of sand could be poured into the empty box? \qquad
24A-47. The population of Mali, Africa has grown linearly since 1990.
Population data are (1990, 8.95 million), (2000, 11.2 million), (2010, 15.5 million), (2020, 21.2 million). Estimate the year when the population becomes 30 million people. \qquad
24A-48. (rad) For what nonzero negative value of p does $(6 p) \sin (p / \pi)=p^{4}$? $-48=$ \qquad

24A-49.
HEMISPHERE AND CONE

Total Area (Hemisphere) $=\begin{gathered}\text { Surface } \\ \text { Area (Cone) }\end{gathered}$
$24 A-49=$ \qquad

24A-50.
EQUILATERAL TRIANGLE PRISM WITH CYLINDRICAL CAVITY

Total Surface Area $=0.906$
$24 A-50=$ \qquad
$24 \mathrm{~A}-51.10^{+(0.256)}+10^{-(0.371)}+\left[10^{(0.665 / 0.837)}-10^{(0.316)}\right]^{1 / 2} 51=$ \qquad

24A-53. $\left(4.58 \times 10^{-4}\right) \operatorname{Ln}\left[\frac{9.93 \times 10^{-4}+\left(8.19 \times 10^{-4}\right)(0.879)}{2.56 \times 10^{-4}+7.47 \times 10^{-4}}\right]-----------13=$ \qquad
24A-54. $\frac{(7.69)^{0.913}-(5.88)^{-0.96}}{-2.68+0.447}$
$54=$ \qquad

24A-55.(rad) $\quad \frac{\arctan \{8.8+(9.58)(0.601)\}}{\arcsin \{(3.51+1.89) / 16.6\}}$ \qquad
24A-56. (rad) The curve $y=x \cos x$ is integrated from zero to x_{1}, where $0<x_{1}<2 \pi$. The area equals zero. What is nonzero x_{1} ? Consider area below the x axis to be negative. \qquad
24A-57. Frieda drives at 70 mph due south from Friona to Muleshoe, 28 mi away. Five minutes later, Mike leaves Muleshoe at 55 mph driving due east to Earth, 18.3 mi away. What is their straight-line distance of closest approach?

57= mi

24A-58. Calculate the product of the determinants of $\left[\begin{array}{cc}-3 & 7 \\ 14 & 9\end{array}\right]$ and $\left[\begin{array}{cc}4 & -12 \\ 2 & 17\end{array}\right] .--58=$

24A-59.
SOLID OF REVOLUTION ($\mathrm{y}=-5$)

Volume $=$?

24A-60.
IDENTICAL EQUILATERAL TRIANGLES AND CIRCLE

\qquad

Page 24A-7
24A-61. Phyllis drives at 55 mph from Hondo to Brenham. How fast should she drive back to Hondo if she wants to average 62 mph for the entire trip?
$61=$
mph
24A-62. What is $614,601-4,323$?
$62=$ \qquad
24A-63. A diver runs off a $10-\mathrm{m}$ high platform directly over the pool's edge. What is the diver's running velocity if they splash into the water 4 m from the pool edge?

24A-66. $\frac{\left\{e^{0.692}+e^{-0.692}\right\}^{2}}{\sqrt{e^{(80.3)(0.158)} \times\left(1 / e^{(9.45)}\right)}}$
$66=$ \qquad

24A-67. (rad) $\frac{\sin (27.8)}{\cos (27.8)} \sqrt{1-\{\sin (0.183 \times 4.42)\}^{2}}$
$67=$ \qquad
$24 \mathrm{~A}-68 .(\mathrm{rad}) \frac{98.2}{6(0.258)}\{(-0.426)+(-0.0509) \sin (-1.35)\}^{5}$
$68=$ \qquad
 \qquad
$24 \mathrm{~A}-70 .(\mathrm{rad}) \frac{\arctan \left\{\mathrm{e}^{-(0.827)(0.999)} \sqrt{(-1.88) /(-4.12)}\right\}}{(-9.76) \sqrt{(1.89)(1.05)(9.73)}}$

$$
\left.\begin{array}{rlrll}
24 \mathrm{~A}-1 & =162 & 24 \mathrm{~A}-11 & =-2000 \\
& =1.62 \times 10^{2} & & =-2.00 \times 10^{3} & \\
& & & =24 \mathrm{~A}-21 & =0.252
\end{array}\right)
$$

24A-51	$\begin{aligned} & =4.27 \\ & =4.27 \times 10^{0} \end{aligned}$
24A-52	$\begin{aligned} & =411,000 \\ & =4.11 \times 10^{5} \end{aligned}$
24A-53	$\begin{aligned} & =0.000245 \\ & =2.45 \times 10^{-4} \end{aligned}$
24A-54	$\begin{aligned} & =-2.80 \\ & =-2.80 \times 10^{0} \end{aligned}$
24A-55	$\begin{aligned} & =4.53 \\ & =4.53 \times 10^{0} \end{aligned}$
24A-56	$\begin{aligned} & =2.33 \\ & =2.33 \times 10^{0} \end{aligned}$
24A-57	$\begin{aligned} & =13.7 \\ & =1.37 \times 10^{1} \end{aligned}$
24A-58	$\begin{aligned} & =-11500 \\ & =-1.15 \times 10^{4} \end{aligned}$
24A-59	$\begin{aligned} & =343 \\ & =3.43 \times 10^{2} \end{aligned}$
24A-60	$\begin{aligned} & =0.165 \\ & =1.65 \times 10-1 \end{aligned}$

$\begin{aligned} 24 \mathrm{~A}-31 & =0.132 \\ & =1.32 \times 10^{-1} \end{aligned}$	$\begin{aligned} 24 \mathrm{~A}-41 & =47.7 \\ & =4.77 \times 10^{1} \end{aligned}$
$\begin{aligned} 24 \mathrm{~A}-32 & =0.0101 \\ & =1.01 \times 10^{-2} \end{aligned}$	$\begin{aligned} 24 \mathrm{~A}-42 & =0.271 \\ & =2.71 \times 10^{-1} \end{aligned}$
$24 \mathrm{~A}-33=5.27 \times 10^{-9}$	$\begin{aligned} 24 \mathrm{~A}-43 & =-6.14 \\ & =-6.14 \times 10^{0} \end{aligned}$
$\begin{aligned} 24 \mathrm{~A}-34 & =0.170 \\ & =1.70 \times 10^{-1} \end{aligned}$	$\begin{aligned} 24 \mathrm{~A}-44 & =138 \\ & =1.38 \times 10^{2} \end{aligned}$
$24 \mathrm{~A}-35=2.24 \times 10^{-8}$	$\begin{aligned} 24 \mathrm{~A}-45 & =0.000504 \\ & =5.04 \times 10^{-4} \end{aligned}$
$\begin{aligned} 24 \mathrm{~A}-36 & =17.1 \\ & =1.71 \times 10^{1} \end{aligned}$	$24 \mathrm{~A}-46=1.22 \times 10^{7}$
$\begin{aligned} 24 \mathrm{~A}-37 & =5.26 \\ & =5.26 \times 10^{0} \end{aligned}$	24A-47 $=2043$ integer
$\begin{aligned} 24 \mathrm{~A}-38 & =11.3 \\ & =1.13 \times 10^{1} \end{aligned}$	$\begin{aligned} 24 \mathrm{~A}-48 & =-1.36 \\ & =-1.36 \times 10^{0} \end{aligned}$
$\begin{aligned} 24 \mathrm{~A}-39 & =2.26 \\ & =2.26 \times 10^{0} \end{aligned}$	$\begin{aligned} 24 \mathrm{~A}-49 & =272 \\ & =2.72 \times 10^{2} \end{aligned}$
$\begin{aligned} 24 \mathrm{~A}-40 & =5.71 \\ & =5.71 \times 10^{0} \end{aligned}$	$\begin{aligned} 24 \mathrm{~A}-50 & =0.232 \\ & =2.32 \times 10^{-1} \end{aligned}$

