

23A-1. $(-9.46 \times 4.86)+33.4$--1=

23A-3. $(-0.822-0.544-2.12+0.297) \times(0.821)------------------------3=$ \qquad

23A-4. $\{(-37)(0.366+0.543-0.364)(48.4)\}+874$
$4=$ \qquad

23A-5. $\frac{\{(0.083-0.0502+0.131) /(-0.0203)\}}{\{(0.0312)(-0.0785) /(-0.0251)\}}$
$5=$ \qquad

23A-6. Calculate the product of 99.7 and the positive square root of 770 .
---- $6=$ \qquad
$23 A-7$. Calculate negative x if $5 x=35 / x$. \qquad

23A-8. Calculate the cube root of the product of 4780 and -18.4 .
$8=$ \qquad
23A-9.
$23 A-11 . \frac{(0.0581)(-0.0356)-(0.479)(-0.00108)+4.11 \times 10^{-4}}{-9.76 \times 10^{-4}+(-0.0137)(0.0494)}$ \qquad

23A-12. $\frac{\{-53.6+(-2.7)(5.29)(4.51)\}}{(0.321+2.8)(\pi)(1.09+0.317)}$
$12=$ \qquad
23A-13.

$$
\frac{\{(-0.921+0.109)(57.8+66.8)+(-128)\}(0.527)}{(-0.176)(0.771+\pi)(-0.102)}
$$

$$
13=
$$

\qquad
23A-14. $\frac{2570}{-4.36}+\frac{713+615-827}{0.167-0.906}+\frac{(0.005+0.0107)}{\left\{\left(-6.20 \times 10^{-5}\right) /(4.95)\right\}}$
$14=$ \qquad

23A-15.

$$
\frac{56300+6.41 \times 10^{5}-\left(61200+5.93 \times 10^{5}\right)(1.55-1.41)}{(-612)(-0.286)(0.53)(244-372+395)}
$$

$$
15=
$$

\qquad

23A-16. What is the viewing area of a rectangular picture frame that has dimensions of 9.5 in and 13 in ?
$16=$ \qquad
23A-17. The pitcher's mound is 60 ft 6 in from home plate, and home plate is 127 ft 3 in from second base. What is the distance from the pitcher's mound to second base? $17=$ \qquad
23A-18. A supersonic transport flies at 1.7 times the speed of sound. The speed of sound is 660 mph . How long does it take to fly from Los Angeles to Toyko, if the distance is 5451 mi ? $18=$ \qquad

23A-19.
RIGHT TRIANGLE

23A-20.

RIGHT TRIANGLE

Area $=5930$
$23 A-20=$
 \qquad
23A-22. $\left[\frac{\sqrt{0.652-0.428}}{-5.77}+\frac{(-0.212)}{6.72}\right]^{2}$ $22=$ \qquad
23A-23. $[-59+\sqrt{1150}]^{2} \times[601+2350]^{2} \times \sqrt{0.0205 / 0.0684}$
$23=$ \qquad
$23 A-24$. $(-0.0816)(-3.7) \sqrt{(-0.149)^{2} / 0.297}+1 / \sqrt{56.3+272}------------24=$ \qquad
 \qquad

23A-26. Sam runs a mile in 6 min 48 s . What is his velocity?
$26=$ \qquad mph 23A-27. The Mona Lisa painting is valued at $\$ 900$ million. It is rectangular, 2 ft 6 in by 1 ft 9 in . What is the value per unit area? $27=$ \qquad 23A-28. Lenny invests $\$ 3530$ for two years at 5% annual interest. What is the positive difference in total earnings, if the money was compounded annually or monthly?

23A-29.

Total Surface Area $=$?
$23 A-29=$

Volume $=77.3$

SPHERE

\qquad
 \qquad

23A-32. $\frac{(0.0605+0.355)^{2}}{\sqrt{55.7-28.3}}+\frac{0.00526}{\sqrt{0.0556+0.123}}$
$32=$ \qquad
$23 \mathrm{~A}-33 . \frac{\sqrt{(0.00516) /\{(0.373) / \sqrt{0.118}\}}}{0.0677+(0.917)(8.42)}+\left\{1.68 \times 10^{-5}+2.66 \times 10^{-5}\right\}^{1 / 2} 33=$ \qquad
23A-34. $\frac{(1.33)^{2}+\sqrt{1.46}}{\sqrt{(0.766)(-75.9)^{2}}}+\frac{\sqrt{\sqrt{(0.319)(0.348)}}}{-8.26+25}$ $34=$ \qquad
23A-35. $\frac{\frac{1}{-5590}+\frac{\pi}{(103+85.4)^{2}}-\frac{\sqrt{3.21 \times 10^{-6}}}{(-3.97)^{2}}}{(-2.94+3.5)^{2}+(-0.323)}$ $35=$

23A-36. Texas has a land area of $268,596 \mathrm{mi}^{2}$. A map of the US is scaled such that 1 in on the map represents $\underline{112.5} \mathrm{mi}$. What is the map area of
Texas?
$36=$ \qquad
23A-37. What is the positive x value of the intersection of the line
$y=3 x+2$ and the curve $y=8 x^{2}-20 x-25 ?$ \qquad
23A-38. Marie bikes 5 mi to school in 20 min , and she can walk in 1 hr 20 min. On the way to school, her bike broke down, and she walked the rest of the way. If the total commute was 47 min , how far from home was she when the bike broke down? $38=$

23A-39.

CIRCLE AND SCALENE TRIANGLE

$23 A-39=$ \qquad

SCALENE TRIANGLES

$23 A-40=$

23A-41. $(-0.0837)(0.00337) 10^{\{-0.0897 /-0.0275\}}$
$41=$ \qquad
23A-42. $\frac{\left(1.13 \times 10^{-6}\right)}{\left(-7.08 \times 10^{-5}\right)}\left[1-\mathrm{e}^{-(0.315)(0.451)}\right]$
$42=$ \qquad
$23 A-43 . \frac{0.054-0.0878}{\log (\pi+4.91)}$
$43=$ \qquad

23A-44. $(227+429)^{1 / 3}+1 /\left\{(77.7)^{-0.132}\right\}$
$44=$ \qquad
$23 \mathrm{~A}-45 .(\mathrm{deg}) \sin \left[90^{\circ} \times \frac{\left(-8.44 \times 10^{-4}\right)}{\left(9.40 \times 10^{-4}\right)}\right]+\cos \left\{147^{\circ}-125^{\circ}\right\}$
$45=$ \qquad
23A-46. Columbus' ship Santa Maria weighed 50 tons and was 76 ft long.
A US battleship is 860 ft long and weighs 48,600 tons. The battleship density is actually two thirds the Santa Maria density. What is the percent error in estimating the battleship weight using the Santa Maria data? $46=$ \qquad
23A-47. Shirt size is measured by the neck perimeter in inches. The amount of cloth needed to make a shirt is measured by the length of cloth in yards from a bolt of constant width. A Size 12 shirt is made from 1.5 yd of cloth. Other values (Size, Cloth) are (15, 2.2 yd), (16, 2.5 yd) and (17, 2.8 yd). How much cloth is needed to produce a Size 18 shirt?
$47=$ \qquad
$23 A-48$. What is z if $5 \sqrt{z}=\sqrt[3]{z}+24$?
$48=$ \qquad

23A-49.
CUBE AND SQUARE PYRAMID

Volume $($ Pyramid $)=\frac{\text { Volume }(\text { Cube })}{\pi}$

23A-50.

RECTANGULAR SOLID

$$
A B=0.232 \quad B C=0.090 \quad B D=0.143
$$

$23 A-50=$

Page 23A-6

23A-51. $\frac{10^{(0.889)} \times 10^{-(0.901)}+0.769}{10^{(\pi+0.657)}}$ \qquad

23A-52. $\frac{(5.87-1.54) \mathrm{e}^{(0.179)(3.21)}}{\mathrm{e}^{-(6.89-2.58)}}$
$52=$ \qquad

23A-53. $\frac{\operatorname{Ln}\left(2.73 \times 10^{-5}+2.87 \times 10^{-5}\right)}{5.09 \times 10^{-7}}+\frac{\operatorname{Ln}\left(9.46 \times 10^{-5}\right)}{3.93 \times 10^{-5}-3.85 \times 10^{-5}}$ $53=$ \qquad

23A-54. $\frac{(776+1110)^{-0.225}}{(260)^{-(0.272+0.895)}}$ \qquad

23A-55. (rad) $\frac{\arcsin \{(6.69)(-5.22) /(-45.6)\}}{6.99+(2.47)(3.61)}$ \qquad

23A-56. Calculate the area under the curve $y=4 x^{2}-14 x+15$ for $1<x<6$. ----- $56=$ \qquad
23A-57. A bug population of 100 bugs doubles in number every 3 days.
Birds eat the bugs, each bird consuming 26 bugs/day. How many birds are needed to control the total bug population to just under 9,000 bugs? \qquad $57=$ \qquad integer

23A-58. What is the determinant of $\left[\begin{array}{ccc}1 & 5 & 15 \\ 5 & -6 & -10 \\ 15 & -10 & 22\end{array}\right]$? $58=$ \qquad

23A-59.

Hatched Area = ?

23A-60.

CONGRUENT SEMICIRCLES

Hatched Area $=0.435$
\qquad

Page 23A-7
23A-61. How long after 1:15 do the minute and hour hands of a clock align?

23A-62. The probability of winning the Powerball lottery is 1 in 192 million. What is the probability of winning it 100 times? \qquad
23A-63. A tennis player hits a lob from the baseline. The ball's maximum height is 15 ft at the net, and it travels the full length of the court, 78 ft .
What is the time of flight of the ball? \qquad

Area(Isosceles Triangle) = Area(Equilateral Triangle)
$23 A-64=$ \qquad

23A-65.
CONGRUENT CIRCLES

Hatched Area $=3.53$
$23 A-65=$ \qquad

23A-66. $10^{\pi} \times \sqrt{\frac{\left(10^{4.09}\right)\left(10^{0.446}\right)}{\left(10^{-8.64}\right)\left(10^{0.882}\right)}}$
$66=$
$67=$ \qquad
23A-67. (rad) $\sin (5.19) \cos (3.69)-\cos (5.19) \sin (3.69)$ \qquad
$68=$ \qquad
23A-69. $\frac{1}{(0.649)}+\frac{1}{3(0.649)^{3}}+\frac{1}{5(0.649)^{5}}+\frac{1}{7(0.649)^{7}}$
$69=$ \qquad

23A-70. $\frac{1}{\sqrt{(51.1)^{2}-(1670)}} \operatorname{Ln}\left\{\frac{(59.7)-\sqrt{(51.1)^{2}-(1670)}}{(59.7)+\sqrt{(51.1)^{2}-(1670)}}\right\}$

$$
\begin{aligned}
& \begin{aligned}
23 \mathrm{~A}-1 & =-12.6 \\
& =-1.26 \times 10^{1}
\end{aligned} \\
& 23 \mathrm{~A}-2=6870 \\
& =6.87 \times 10^{3} \\
& 23 \mathrm{~A}-11=0.690 \\
& =6.90 \times 10^{-1} \\
& 23 \mathrm{~A}-21=-0.352 \\
& =-3.52 \times 10^{-1} \\
& 23 \mathrm{~A}-12=-8.55 \\
& =-8.55 \times 10^{0} \\
& 23 \mathrm{~A}-22=0.0129 \\
& =1.29 \times 10^{-2} \\
& 23 \mathrm{~A}-3=-2.62 \\
& =-2.62 \times 10^{0} \\
& 23 \mathrm{~A}-4=-102 \\
& =-1.02 \times 10^{2} \\
& 23 \mathrm{~A}-13=-1720 \\
& =-1.72 \times 10^{3} \\
& 23 \mathrm{~A}-14=-2520 \\
& =-2.52 \times 10^{3} \\
& 23 \mathrm{~A}-15=24.5 \\
& =2.45 \times 10^{1} \\
& 23 \mathrm{~A}-16=124 \\
& =1.24 \times 10^{2} \\
& 23 \mathrm{~A}-17=66.8 \\
& =6.68 \times 10^{1} \\
& 23 \mathrm{~A}-18=4.86 \\
& =4.86 \times 10^{0} \\
& 23 \mathrm{~A}-19=0.630 \\
& =6.30 \times 10^{-1} \\
& 23 \mathrm{~A}-26=8.82 \\
& =8.82 \times 10^{0} \\
& 23 \mathrm{~A}-27=2210 \\
& =2.21 \times 10^{3} \\
& 23 \mathrm{~A}-28=\$ 8.62 \\
& 23 \mathrm{~A}-29=26,500 \\
& =2.65 \times 10^{4} \\
& 23 \mathrm{~A}-30=5.29 \\
& =5.29 \times 10^{0} \\
& 23 \mathrm{~A}-8=-44.5 \\
& =-4.45 \times 10^{1} \\
& 23 \mathrm{~A}-9=5.91 \\
& =5.91 \times 10^{0} \\
& 23 \mathrm{~A}-10=4.64 \\
& =4.64 \times 10^{0} \\
& 23 \mathrm{~A}-20=125 \\
& =1.25 \times 10^{2} \\
& 23 \mathrm{~A}-23=3.00 \times 10^{9} \\
& 23 \mathrm{~A}-24=0.138 \\
& =1.38 \times 10^{-1} \\
& \begin{aligned}
23 \mathrm{~A}-25 & =6950 \\
& =6.95 \times 10^{3}
\end{aligned}
\end{aligned}
$$

	$\stackrel{n}{n}$	$\begin{aligned} & \underset{0}{x} \\ & \underset{\sim}{x} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & r_{0} \\ & \underset{\sim}{x} \\ & \underset{\infty}{\infty} \\ & \stackrel{1}{1} \end{aligned}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$	$\begin{aligned} & N \\ & \underset{\sim}{x} \\ & \underset{\sim}{1} \\ & \underset{\sim}{r} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{10} \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & V_{0} \\ & \underset{\sim}{x} \\ & \underset{\sim}{r} \\ & \end{aligned}$	$\begin{aligned} & \bar{ভ} \\ & \text { © } \\ & \stackrel{\text { N }}{\triangle} \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{1}{N}}$		$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \underset{\sim}{\mathcal{N}} \\ \underset{O}{2} \end{gathered}$	'10
II	II	11	1	1	1	11	1	॥	II	॥	॥	11	॥	॥	॥	II
\cdots	N		ก๊	$\stackrel{\downarrow}{\square}$		$\stackrel{1}{n}$		$\stackrel{\square}{6}$		ก	$\stackrel{\infty}{\sim}$		9		\bigcirc	
$\stackrel{1}{\underset{N}{N}}$	$\stackrel{1}{N}$		$\stackrel{1}{\underset{N}{N}}$	$\stackrel{1}{\underset{N}{N}}$		$\stackrel{1}{N}$		$\stackrel{\frac{1}{N}}{\underset{N}{N}}$		$\stackrel{\frac{1}{4}}{\underset{N}{N}}$	$\stackrel{\frac{1}{2}}{N}$		$\stackrel{\frac{1}{2}}{N}$		$\stackrel{1}{\sim}$	

23A-31	$\begin{aligned} & =0.0786 \\ & =7.86 \times 10^{-2} \end{aligned}$	23A-41	$\begin{aligned} & =-0.515 \\ & =-5.15 \times 10^{-1} \end{aligned}$
23A-32	$\begin{aligned} & =0.0454 \\ & =4.54 \times 10^{-2} \end{aligned}$	23A-42	$\begin{aligned} & =-0.00211 \\ & =-2.11 \times 10^{-3} \end{aligned}$
23A-33	$\begin{aligned} & =0.0154 \\ & =1.54 \times 10^{-2} \end{aligned}$	23A-43	$\begin{aligned} & =-0.0373 \\ & =-3.73 \times 10^{-2} \end{aligned}$
23A-34	$\begin{aligned} & =0.0793 \\ & =7.93 \times 10^{-2} \end{aligned}$	23A-44	$\begin{aligned} & =10.5 \\ & =1.05 \times 10^{1} \end{aligned}$
23A-35	$\begin{aligned} & =0.0217 \\ & =2.17 \times 10^{-2} \end{aligned}$	23A-45	$\begin{aligned} & =-0.0600 \\ & =-6.00 \times 10^{-2} \end{aligned}$
23A-36	$\begin{aligned} & =21.22 \\ & =2.122 \times 10^{1}(4 \mathrm{SD}) \end{aligned}$	23A-46	$\begin{aligned} & =-0.620 \\ & =-6.20 \times 10^{-1} \end{aligned}$
23A-37	$\begin{aligned} & =3.77 \\ & =3.77 \times 10^{0} \end{aligned}$	23A-47	$\begin{aligned} & =3.11 \\ & =3.11 \times 10^{0} \end{aligned}$
23A-38	$\begin{aligned} & =2.75 \\ & =2.75 \times 10^{0} \end{aligned}$	23A-48	$\begin{aligned} & =29.3 \\ & =2.93 \times 10^{1} \end{aligned}$
$23 A-39$	$\begin{aligned} & =1.85 \\ & =1.85 \times 10^{0} \end{aligned}$	23A-49	$\begin{aligned} & =1.87 \\ & =1.87 \times 10^{0} \end{aligned}$
23A-40	$\begin{aligned} & =3.95 \\ & =3.95 \times 10^{0} \end{aligned}$	23A-50	$\begin{aligned} & =0.144 \\ & =1.44 \times 10^{-1} \end{aligned}$

