

I. General Notes

- 1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.
- 2. All problems have a value of 60 points.
- 3. There is no extraneous input. All input is exactly as specified in the problem. Unless specified by the problem, integer inputs will not have leading zeros. Unless otherwise specified, your program should read to the end of file.
- 4. Your program should not print extraneous output. Follow the form exactly as given in the problem.
- 5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted. This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number	Name
Problem 1	Ada
Problem 2	Ariel
Problem 3	Bodhi
Problem 4	Caroline
Problem 5	Christie
Problem 6	Claudius
Problem 7	Garold
Problem 8	Hannah
Problem 9	Jennifer
Problem 10	Leah
Problem 11	Lucas
Problem 12	Veda

1. Ada

Program Name: Ada.java

Input File: None

Ada Lovelace, a.k.a Augusta Ada King and the Countess of Lovelace and the daughter of one of the greatest British poets Lord Byron, was also a pioneer in the discipling of computing. She worked with Charles Babbage in the 1830s on his Analytical Engine which was a follow-on to his simpler Difference Engine, a mechanical calculator.

Ada recognized that the Analytical Engine could be "programmed", making it a general-purpose computer. Even though she worked with a mechanical device, not electronic as are modern computers, and her "programming" involved mechanical switches, she is recognized as the world's first programmer!

Write a program that displays the following exact message at the left edge of the screen:

Ada Lovelace - World's First Computer Programmer!

Input: None.

Output: Exact statement shown above.

Sample input: None

Sample output: Ada Lovelace - World's First Computer Programmer!

2. Ariel

Program Name: Ariel.java

Input File: ariel.dat

Your friend Ariel is an architectural student studying subway systems, and they need your help with their homework. They need to plan out a subway stop, and they have been given the times that all the trains will be arriving and departing from the stop. Write a program to determine the minimum number of train stops required to ensure that there are no delays, in other words, every train should arrive when there is at least one open stop.

Input: The input will begin with an integer, $n (0 < n \le 1000)$, denoting the number of test cases to follow. Each test case will consist of two lines of space separated strings denoting the arrival times of all trains on the first line, and departure times of all trains on the second line, all in the format "H:MM", and all minutes will be multiples of 5. The ith index in both lists correspond, as in, all arrival times and departure times in the same index in their respective lists refer to the arrival and departure of the same train. There will never be two trains with the same arrival AND departure time, although trains may share the same arrival OR departure. It can be assumed that the trains operate on a 24-hour cycle, so trains arrive and leave at the same time every day.

Output: Output the integer denoting the minimum number of train platforms required so that the current train schedule will have no delays for trains when arriving. If one train arrives at the same time that another train departs, then you will only need one platform (the train engineers have been specifically trained for these situations at the same school as those two guys from the Polar Express).

Sample input:

3 9:30 9:45 9:50 10:30 11:30 12:00 10:00 10:05 10:15 11:00 12:00 12:10 0:00 1:00 2:00 3:00 4:00 0:10 1:10 2:10 3:10 4:10 8:15 8:25 8:30 8:35 8:40 8:45 9:00 8:25 8:40 8:45 8:45 8:55 9:00 9:30

Sample output:

- 3
- 1
- 3

3. Bodhi

Program Name: Bodhi.java

Input File: bodhi.dat

Bodhi's older sister is studying finance in college and was showing Bodhi the concept of financial compounding. It is a type of investment, like a savings account, where the profit earned is put right back into that same investment. The result is you earn even more profit from the previous profit in addition to profit from the original investment. He thought that sounded rather interesting but wants to see the concept in action, meaning, **show me the money!**

With **PV** as the present value or a fixed amount that is invested only one time and **FV** as the future value after **n** compounding periods (addressed below), the simple compounding formula is:

$FV = PV(1 + rate)^n$

The compounding period could be days, months, quarters, years, or some other fixed period of time and defines when interest profit is calculated and put back into the account. It can get confusing comparing options so most investments state an annual percentage rate (APR) which is the result of the periodic compounding after 1-year.

For the formula above, **rate** is the APR divided by the number of compounding periods in a year. It is a periodic rate that matches the compounding period. To obtain a monthly rate, simply divide the APR by 12 monthly periods in a year and a quarterly or 3-month rate would be APR divided by 4. In addition, the standard formula requires the percentage rates be converted into their equivalent decimal form so a 5.25% rate becomes 0.0525.

The total profit after **n** periods would simply be the difference between the future value (FV) which is the end of the investment and the original investment (PV) which is the initial investment.

Input: First line will contain an integer T with $1 \le T \le 10$, the number of test cases. Each test case will consist of one set of whitespace-separated investment parameters on a single line. The investment parameters are **PV**, a dollar and cents amount no larger than \$1,000,000 followed by an APR which is a percentage greater than 0.00% and will not exceed 25.00% (which would be a dream rate!). The final pieces of data for a single test case are the number of periods in a year in the range [1, 366] and **n**, the number of periods to compound which will not exceed 100.

Output: Each test case will produce 1 line of output containing the computed **FV** which is a dollar and cents amount and the total profit, neither of which will not exceed \$3,000,000.00. Format both values with a leading dollar sign (\$) and round to 2 decimal places of accuracy and separated by a single space as shown in the sample output.

Sample input:

3 3500.00 5.25 12 15 100.00 7.95 4 40 9999.99 9.99 2 20

Sample output:

\$3736.86 \$236.86 \$219.72 \$119.72 \$26507.69 \$16507.70

4. Caroline

Program Name: Caroline.java

Input File: caroline.dat

Caroline's teacher in her AP Psychology class told her that if someone is asked to select a random number, it is more likely that the number will be an even number. Her class ran an experiment to verify this, and they discovered it was true.

She got to thinking. What if ten people selected a random number, would the sum of the even numbers be greater than the sum of the odds?

So, she has asked you to write a program to answer that question. Your job is to read in a list of ten whole numbers. Find the sum of the odd numbers in the list. Also find the sum of the even numbers in the list. Compare the two sums and let the world know your findings.

Input: Line #1 will consist of one integer N in the range [1,25] which indicates how many lines of data will follow. Each of the N lines of data will contain ten whole numbers in the range [0,9999]. The numbers in each data set will be separated by one whitespace.

Output: Output one of the three messages for each date set.

- If the even sum is greater, print "Evens win by ? point(s)" where ? is filled with the positive difference between the two sums.
- If the odd sum is greater, print "Odds win by ? point(s)" where ? is filled with the positive difference between the two sums.
- If the sums are equal, print the message "It's a tie!!!"

Sample input:

5 12 13 14 15 23 24 25 26 55 62 7 7 7 7 7 7 7 7 28 28 2 3 2 3 2 3 2 3 2 3 2 3 5 1 2 8 6 7 5 3 0 9 11 22 33 44 55 66 77 88 99 110

Sample output:

```
Evens win by 7 point(s)
It's a tie!!!
Odds win by 5 point(s)
Odds win by 14 point(s)
Evens win by 55 point(s)
```

5. Christie

Program Name: Christie.java

Input File: christie.dat

Christie is so intrigued with numbers and their properties. She of course adores prime numbers (and who doesn't?), but she also is very interested in other types of numbers like Fibonacci Numbers, Happy Numbers, Evil Numbers, Fermat numbers, etc. She is determined to create her own special numbers and name them Christie Numbers.

So, this is what she has decided to do.

A Christie Number is a whole number in which the sum of the squares of the digits is a perfect square.

Example: 148 is a Christie Number:

 $1^2 + 4^2 + 8^2 = 1 + 16 + 64 = 81$

Since 81 is a perfect square, 148 is a Christie Number.

Christie will give you two integers A and B where you are guaranteed that A < B. Your task is to check every natural number from A to B (inclusive) and to list the Christie numbers in that range in order from smallest to greatest.

Input: Line #1 will consist of one integer N in the range [1,25] which indicates how many lines of data will follow. Each of the N lines of data will contain two integers A, then B. Both numbers are in the range [1,9999].

Output: Output a list of Christie Numbers in the range [A,B] written horizontally with one white space in between each. If there are no Christie numbers in that range, print "NONE".

Sample input:

Sample output:

10 20 30 34 40 43 50 100 122 148 184 200 50 NONE

6. Claudius

Program Name: Claudius.java

Input File: claudius.dat

You and Claudius are lost in the woods! Quick, write a program on your handy dandy pocket computer to find the shortest path out of the woods! You have a map of the woods, with different geological features and the parking lot marked, and you need to determine if you will escape from the woods before the Forest Rangers come to find you. This map is magic, and will also contain the locations of certain dangerous animals and areas to avoid. The map will be made up of the following characters:

- 'M' denotes the location of a mountainous region on the map, these areas can be crossed at a rate of 3 hours per space.
- 'T' denotes the location of a forested area of the map, these areas can be crossed at a rate of 2 hours per space.
- 'R' denotes the location of a rock/boulder, these areas are impassable.
- 'Q' denotes the location of quicksand, these areas are impassable, unless they are directly adjacent (up, down, left, right) to a forested area, in which case you can cross at a rate of 3 hours per space, as you can use the trees to climb out if you get stuck.
- 'V' denotes the location of a river, these areas are impassable.
- 'A' denotes the location of an alligator, which you must stay at least one block away from (you cannot be adjacent in any direction including diagonals).
- '.' denotes a path/trail/dirt patch which can be passed at a rate of 1 space per hour.
- 'S' denotes your starting point on the map.
- 'E' denotes the parking lot, which is the end point of your journey.
- 'B' denotes the location of a bear, which you must be at least 2 spaces away from at all times, including diagonals.

You can only move in the 4 cardinal directions (up, down, left, right).

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case will begin with 3 space-separated integers, r, c, and h, denoting the number of rows and columns in the map of the woods, and the number of hours you have until the Forest Rangers come looking for you. The following r lines will each contain c characters denoting the map of the woods.

Output: If you make it to the parking lot in h or less hours, output the string "Free at last, Free at last. ", followed by the number of hours you had left until the Forest Rangers will look for you (could be 0), followed by the string " hour (s) to spare.". If you do not make it to the parking lot in time, output the string "Smokey the Bear is en route.".

Sample input:	Sample output:
2	Free at last, Free at last. 3 hour(s) to spare.
6 7 15	Smokey the Bear is en route.
SMM.V	
MMMMV	
MMRV	
VV.VVVV	
AQQE	
MMM	
5 5 12	
SMTTB	
MMTTT	
MTT	
VVVVV	
ARR.E	

7. Garold

Program Name: Garold.java

Input File: garold.dat

You and your friend Garold have been playing a game called super tic tac toe. The main issue you have been having is that the board is somewhat confusing and you never know who's won. You need to write a program to take in a given super tic tac toe board and find out who has won. The rules of super tic tac toe are as follows:

Each super tic tac toe board will be made up of 9 regular tic tac toe boards, arranged with one regular board making up a cell. In order to win super tic tac toe, you need to win 3 of the regular boards in a row (so if you win the top 3 boards you win super tic tac toe). You can win if you get all of any column, row or either of the diagonals. To win each board, you need to win a row, column or diagonal, just like in regular tic tac toe. You need to output who wins the game.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case will consist of 9 lines of 9 characters each, made up of 'X' – denoting an X on the board, 'O' – denoting an O on the board, '.' – denoting an empty space on the board. Every 3x3 characters of input denote a board (top left 3x3 denotes the top left board on the super tic tac toe board, and so on). Each 3x3 board will have a maximum of one winner, but there is no guarantee that the overall board is won by either team.

Output: If one of the players has won the game, output the string "Player ", followed by an X or an O, denoting which player won, followed by "Won.". If neither player has won the game, output "Cat's Game.". After outputting this string, output the the layout of the super board, with each 3x3 board denoted by an X, O, or ., denoting the winner if the board was won, or a . if no one has won the board. See the Sample output for more information.

Sample input: 2	Sample output: Plaver X Won.
X.0000X0.	XOX
OXX.XX.	Х.О
00XX00X	XOO
X.OX.00	Cat's Game.
X00.0.00.	.OX
X00.0XX	0
XXX000.0X	Ο.Χ
00X.X0.	
0.XX0X00X	
X.0000X0.	
0X.XX.	
00XX00X	
X.OX.00	
.00.0.00.	
X00.0XX	
X.0000X	
00	
O.XXOXXXX	

8. Hannah

Program Name: Hannah.java

Input File: hannah.dat

Hannah is practicing her programming skills for the upcoming UIL Computer Science contest season. She heard that the State contest experience is very challenging and wants to be prepared. Her coach explained how the overall state scores are grouped by classifications (1A, 2A, 3A, 4A, 5A, 6A) and are a combination of both programming and the written test. Each contest team consists of 3 students that take the written test with 40 questions which has a max score of 240 but could be negative when students answer too many questions incorrectly; there is no penalty for unanswered questions. The max team score for the written test is 720, or 3 scores of 240 points. The programming component of the contest consists of 12 problems worth a max of 60 points each but submissions that are not correct reduces the problem's max score by 5 points for each bad submission. The team programming score is another 720 points, or 12 programs of 60 points. The overall team score is simply the sum of the written and programming scores.

The following table is a sample of the programming data.

Prog		Prob											
Scores	Class	1	2	3	4	5	6	7	8	9	10	11	12
Team 1	2A	55	60	50	60	60	60	60	60	60	60	0	60
Team 2	5A	60	60	60	60	60	55	60	60	50	0	60	55
Team 3	6A	60	50	60	55	60	60	60	60	0	60	60	45

The following table is a sample of the written test data.

Test			
Scores	Student 1	Student 2	Student 3
Team 1	200	210	184
Team 2	104	172	224
Team 3	86	164	196

Hannah has accepted a challenge of processing the raw scores to determine the top 3 teams in each classification. It is just summing the scores and finding the 3 top overall team scores in each classification. Ties are not common so we will ignore that possibility for this program. Can you handle her challenge?

Input: First line will contain an integer **T** with $1 \le \mathbf{T} \le 10$, the number of test cases. Each test case will start with a positive integer **N** which is the total number of teams. The **N** following lines will each contain a school name with no spaces, a classification as shown above, and 12 integers in the range [0,60], all items whitespace-separated. Those lines are then followed by **N** more lines each containing a school name with no spaces and 3 integers in the range [-80,240], all whitespace -separated. Team names will be in the same order for both sets of scores but classification levels may vary in order. There is guaranteed to be 1 or more teams for each classification and they must have 12 program scores and 3 written exam scores.

Output: Each test case will produce a list of the team names and scores in descending order for each classification, organized from 1A to 6A. Label and format the results as shown in the sample below. Display a single line following each test case containing 15 equal signs "=========".

Sample input:

2												
15												
Team 1 2A	60	40	30	60	55	50	30	30	55	35	50	0
Team 2 5A	35	50	30	45	50	50	30	60	50	50	0	30
Team 3 6A	35	30	45	45	30	35	30	40	30	0	40	50
Team 4 1A	30	40	0	55	0	30	35	55	40	55	30	60
Team 5 5A	40	55	30	45	55	45	40	0	35	60	40	55

~ Input data continues on next page ~

UIL – Computer Science Programming Packet – District - 2024

~ Hannah input	continu	ed ~											
Team_6 4A	0	35	45	40	30	30	0	50	45	55	40	50	
Team_7 6A	35	0	45	55	60	0	60	50	55	30	30	50	
Team_8 1A	35	45	35	60	40	35	55	40	0	30	45	55	
Team_9 6A	30	30	22	0	40 60	6U 0	30	20	6U 45	30 55	33	22	60
Team 11	4A 3 2	3J 45	40	0 35	80 35	0 45	40 0	30	4J 55	40	3-3- 4-0	50 60	30
Team 12	5A	 0	30	55	45	40 60	55	0	30	-0 60	35	60	55
Team 13	3A	60	0	55	50	35	30	40	0	50	45	35	35
Team 14	5A	50	45	0	60	40	40	45	40	0	60	45	45
Team_15	2A	35	55	60	0	60	50	60	35	30	0	45	35
Team_1 184	155	70											
Team_2 199	192	203											
Team 1 93	1// 75	229 121											
Team 5 0	210	228											
Team 6 180	220	131											
Team 7 174	92	235											
Team_8 226	55	234											
Team_9 92	196	163											
Team_10	234	170	145										
Team_11	136 195	1/8 112	185										
Team 13	10J 68	-12	116										
Team 14	230	121	146										
Team 15	75	97	53										
20 -													
Team_1 2A	50	30	55	30	35	55	30	40	55	35	30	0	
Team_2 5A	60	30	35	60	45	50	30	30	30	35	0	55	
Team_3 6A	50	60 20	50	50	45	55	45 50	50 25	35	0	55 25	55	
Team 5 5A	30	50 50	40 35	30 55	30 30	30	20 40	35 0	0 50	40 45	35 40	60 50	
Team 6 4A	0	35	30	40	55	55	0	35	60	-9 60	40 60	50	
Team 7 6A	45	0	35	30	35	0	60	55	30	30	60	60	
Team_8 1A	45	60	0	40	0	45	35	30	60	30	60	60	
Team_9 2A	30	35	30	0	35	30	30	55	45	45	30	60	
Team_10	4A	40	50	0	60	0	55	35	35	40	60	60	60
Team_11	JA E D	35	0	45	30	35	0	45	35	35	30	45 55	45
Team 13	3A 3A	60	43	4J 50	40 30	55	4J 50	0 50	0	40 30	4J 35	35	40
Team 14	5A	40	55	0	40	35	30	30	50	0	35	50	45
Team 15	2A	40	30	50	0	30	50	60	30	55	0	50	30
Team_16	4A	60	55	55	60	0	50	50	30	30	35	0	55
Team_17	ЗA	30	55	50	55	50	0	40	40	55	55	50	0
Team_18	6A	40	60	30	50	35	45	0	30	40	55	0	60
Team_19 Team_20	5A 67	35	30 30	50 40	45 40	50	40 45	40 35	U 55	45	U 55	40 30	45
Team 1 98	222	156	50	10	10	50	10	55	55	0	55	50	00
Team 2 134	208	140											
Team_3 215	128	62											
Team_4 180	67	132											
Team_5 0	206	210											
Team_6 148	141	175											
Team 8 73	202	1/4 231											
Team 9 112	103	187											
Team 10	193	226	131										
Team_11	59	138	193										
Team_12	94	176	205										
Team_13	210	-12	75										
Team_14	∠31 227	100	200										
ream_13	231	103	$\perp \angle \perp$										

~ Input data continues on next page ~

~ Hannah input continued ~

Team 1	.6	-2	113	196
Team 1	.7	144	99	133
Team 1	.8	168	56	226
Team 1	.9	64	73	57
Team_2	20	195	93	235

Sample output:

Classification 1A Results Team 8 990 Team 4 719 Classification 2A Results Team_1 904 Team 15 690 Classification 3A Results Team 11 914 Team 13 607 Classification 4A Results Team 10 989 Team 6 951 Classification 5A Results Team 2 1074 Team 14 967 Team 5 938 Team 12 866 Classification 6A Results Team_7 971 Team 3 952 Team 9 936 _____ Classification 1A Results Team 8 974 Team 4 789 Classification 2A Results Team 15 966 Team 1 921 Team 9 827 Classification 3A Results Team 17 856 Team_11 770 Team 13 723 Classification 4A Results Team 10 1045 Team 6 844 Team 16 787 Classification 5A Results Team 14 974 Team 2 942 Team 12 920 Team 5 871 Team 19 619 Classification 6A Results Team_7 1034 Team_20 1003 Team 3 955 Team 18 895 _____

9. Jennifer

Program Name: Jennifer.java

Input File: jennifer.dat

While studying infinite sums in her Calculus class, Jennifer was introduced to the well-known proof which shows that $0.99\overline{9} = 1$. Being well-versed in the world of mathematical bases, Jennifer's Calculus teacher showed them a similar proof to show what this would be equivalent to in a base five numbering system.

The idea is that if you take a square with side length of 1, and break it down into 25 congruent squares, you can form four identical sections, each with 5 of the congruent squares. This would mean that each of those sections comprise $1/5^{th}$ of the area of the whole square. Doing so would also leave you with 5 remaining squares. If you were to take 4 of the remaining 5 squares, you would then have four new sections each comprising $1/25^{th}$ of the area of the whole square. Then, take the last remaining square, and perform the entire process again on that square infinitely.

| ¹ / ₂₅ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| ¹ / ₂₅ |

This means that $4\left(\frac{1}{5}\right) + 4\left(\frac{1}{25}\right) + \dots + 4\left(\frac{1}{5}\right)^n = 1$. In other words, for a base five numbering system, $(0.44\overline{4})_5 = 1$. However, Jennifer was interested to see whether or not this property of infinite sums generalized to different bases. While investigating this, Jennifer discovered a generalized formula which showed that for all $|x| \ge 1$, where x is equivalent to the base, that...

$$(x-1)\sum_{n=1}^{\infty} \left(\frac{1}{x}\right)^n = 1$$

Discovering this generalized formula got Jennifer interested in the notion of non-integer bases. Specifically, given the inverse of an arbitrary base, help Jennifer determine the most simplified number of sections that will be required at each stage in the infinite sum process.

Input: The first line will be a single integer T ($1 \le T \le 100$) denoting the number of test cases to follow. The next T lines will consist of 2 space-seperated integers, n and d ($1 \le n, d \le 2^{31} - 1$), denoting the numerator and the denominator of the inverse of the current base. It is guaranteed that the value of $\left|\frac{d}{n}\right| > 1$.

Output: For each of the *T* test cases, output two space-separated integers, n_s and d_s , denoting the simplified numerator and denominator of the number of sections that are required at each stage in the infinite sum process.

Sample input:

2 3 4 341 1054

Sample output:

1 3 23 11

10. Leah

Program Name: Leah.java

Input File: leah.dat

Leah is rather fond of expressing numbers in different bases. In particular, Leah has a real affinity for binary numbers. As such, she already has a good understanding of what binary numbers are, and how to read them. In most cases, when generating binary numbers, binary numbers are ordered from least to greatest. For example, the following is a list of the binary representation of the numbers 0 through 7 which are expressed to 3 bits:

0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow 0 1 2 3 4 5 6 7

Leah in her Digital Logic class was recently introduced to Gray Codes, which are an alternative way to order binary numbers. Rather than simply adding one to the previous binary number to generate the next binary number, Gray Codes order binary numbers according to the simple principle that no two adjacent numbers can differ by more than a single bit. The following is the order of the first 8 Gray Codes expressed to 3 bits:

0b000,	0b001,	0b011,	0b010,	0b110,	0b111,	0b101,	0b100
\downarrow							
0	1	3	2	6	7	5	4

However, generating Gray Codes can be decently difficult to do so by hand. Help Leah by writing her a program that generates Gray Codes for different bit widths.

Input: The first line of input will consist of a single integer n ($1 \le n \le 32$) denoting the number of testcases to follow. The next n lines will each contain a single integer w_i ($1 \le w_i \le 8$) denoting the width of any given binary number that Leah wants to generate.

Output: For each of Leah's *n* requests, on their own line, print a space-separated list of the decimal representation of the numbers 0 through $2^{w_i} - 1$ in their Gray Codes ordering.

Sample input:

2

Sample output:

0 1 3 2 6 7 5 4 0 1 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 0 1 3 2

11. Lucas

Program Name: Lucas.java

Input File: lucas.dat

Lucas is a track coach keeping "track" of his runners' times in the "Uphill Mountain Running/Climbing Challenge" - the UMRCC. It is important for him to be very aware of the progress of each member of the team.

Lucas will give you a list of times in seconds for each of his runners. Your job is to examine the list and send him back the average time for each runner written in minutes and seconds.

If the seconds come out to be a decimal number, round down to the whole second. Or as he told us, "chop off the decimal."

Now Lucas realizes that everybody has a bad day and a super-great day from time-to-time. He would like you to drop the fastest <u>and</u> the slowest time for each runner if they have at least three times listed. If a runner has only one or two recorded times, do not drop any scores - because you can't. Each runner will have at least one time, guaranteed.

Input: Line #1 will consist of one integer N in the range [1,25] which indicates how many lines of data will follow. Each of the N lines of data will contain a list of whole number times separated by one white space. On each line there will be T numbers where T is in the range [1,20].

Output: Output the average time. Drop the fastest and slowest times if there are at least three times in the list. The time should be written in the following format. Minutes:Seconds where minutes will be an integer in the range [0,167] and seconds will be a two-digit number in the range [0,59]. There will be a colon in between the two numbers. There should be no whitespace in your answers. If seconds calculate to be a decimal, truncate the value. For example, 34.97 seconds would truncate to 34 with no decimal.

Sample input:

965 1200 1315 950 1408 2201 1534 1232 1236 1238 1240 1300 1303 1220 1251 1332 1299 1600 1200 1300 1400 1500

Sample output:

18:02 23:28 31:07 21:02 23:20

12. Veda

Program Name: Veda.java

Input File: veda.dat

Veda is a successful entrepreneur and has made a name for herself by owning a company which specializes in creating custommade signs. Like most custom-made sign businesses, Veda's company, Ingenious InsigniaTM, prices her signs based off of the amount of ink, dye, or vinyl that would be required to create said sign. As a result, she generates her prices on a per-letter basis, where each letter occurring on the sign costs a certain amount. However, being the smart businesswoman that she is, Veda knows that certain letters require more materials compared to others. As a result, Veda's pricing is different depending on the letter in question.

Wanting to be able to ensure that Veda maintains a competitive advantage over her competitors, she wants to figure out whether or not a certain letter-to-price ordering would make her business favorable. Help Veda write a program that, given a list of letter-to-price pairings, as well as different slogans for signs from potential future customers, returns the cost for each test sign.

Input: The first line of input will consist of a single integer n ($1 \le n \le 26$) denoting the number of unique letter-to-price groups. The next n lines will each consist of a comma-separated list of letters, followed by a colon, followed by a price p (0). This denotes that each letter contained in the comma-separated list costs <math>p dollars per letter. Valid letters consist of only the standard 26 capitalized English letters. All punctuation, spaces, and other special characters are considered free. It is also guaranteed that each letter appears exactly once among the n comma-separated lists.

The next line will consist of a single integer m ($1 \le m \le 50$) denoting the number of slogans that Veda wishes to calculate the price for. The next m lines will each consist of a single slogan, which will strictly consist of capitalized English letters, whitespace, and special characters.

Output: For each slogan that Veda wishes to test, in the order that it appears in the input, on its own line, print out the cost P that it would take to print said slogan using the letter-to-price groupings described in the input. This dollar amount should be prepended with a dollar sign ('\$') and should be expressed to two decimal values (rounded to the nearest cent).

Sample input: (indented lines are continuation of previous line):

o
B,C,D,F,G:0.023
H,J,K,L,M,N:0.102
P,Q,R,S,T:0.0098
V,W,X,Z:0.721
A,E,I,O,U:0.3400005
Y:1.23
5
UNIVERSITY INTERSCHOLASTIC LEAGUE
COMPUTER SCIENCE IS THE BEST SCIENCE
A RUBBER DUCK IS A PROGRAMMER'S BEST FRIEND!!!!
WOULD YOU RATHER HAVE UNLIMITED BACON, BUT NO GAMES, OR GAMES, UNLIMITED GAMES, BUT NO
GAMES?
ROAD WORK AHEAD... UH, YEAH, I SURE HOPE IT DOES

Sample output:

\$7.03 \$4.71 \$4.78 \$15.21 \$8.38

UIL Computer Science Competition

District 2024

JUDGES PACKET - CONFIDENTIAL

I. Instructions

- 1. The attached printouts of the judge test data are provided for the reference of the contest director and programming judges. Additional copies may be made if needed for this purpose.
- 2. This packet must remain CONFIDENTIAL. Additional copies may be made and returned to schools when other confidential contest material is returned.

II. Table of Contents

Number	Name
Problem 1	Ada
Problem 2	Ariel
Problem 3	Bodhi
Problem 4	Caroline
Problem 5	Christie
Problem 6	Claudius
Problem 7	Garold
Problem 8	Hannah
Problem 9	Jennifer
Problem 10	Leah
Problem 11	Lucas
Problem 12	Veda

Problem #1 60 Points

1. Ada

Program Name: Ada.java

Input File: ada.dat

Test Input File: None

Test Output To Screen: Ada Lovelace - World's First Computer Programmer!

Problem #2 60 Points

2. Ariel

Program Name: Ariel.java

Input File: ariel.dat

Test Input File:

10 9:30 9:45 9:50 10:30 11:30 12:00 10:00 10:05 10:15 11:00 12:00 12:10 0:00 1:00 2:00 3:00 4:00 0:10 1:10 2:10 3:10 4:10 8:15 8:25 8:30 8:35 8:40 8:45 9:00 8:25 8:40 8:45 8:45 8:55 9:00 9:30 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:00 8:10 8:20 8:30 8:40 8:50 8:10 8:20 8:30 8:40 8:50 9:00 23:45 23:55 0:05 0:15 23:00 23:10 23:20 23:30 23:40 23:45 23:50 23:55 23:10 23:20 23:30 23:40 23:50 0:05 0:00 0:15 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 12:00 12:10 23:00 23:10 23:20 23:30 23:40 23:45 23:50 23:55 0:00 23:10 23:20 23:30 23:40 23:50 0:05 0:00 0:15 0:10

Test Output To Screen:

Problem #3 60 Points

3. Bodhi

Program Name: Bodhi.java

Input File: bodhi.dat

Test Input File:

10			
3500.00	5.25	12	15
100.00	7.95	4	40
9999.99	9.99	2	20
1000000.00	25.00	12	50
10000.00	5.89	366	1830
10000.00	5.89	12	60
10000.00	5.89	4	20
10000.00	5.89	2	10
10000.00	5.89	1	5
25000.00	4.99	12	120

Test Output To Screen:

\$3736.86 \$236.86 \$219.72 \$119.72 \$26507.69 \$16507.70 \$2803768.37 \$1803768.37 \$13424.23 \$3424.23 \$13414.88 \$3414.88 \$13395.76 \$3395.76 \$13367.57 \$3367.57 \$13312.96 \$3312.96 \$41134.25 \$16134.25 Problem #4 60 Points

4. Caroline

Program Name: Caroline.java

Input File: caroline.dat

Test Input File: 10

Test Output To Screen:

Evens win by 7 point(s) It's a tie!!! Odds win by 5 point(s) Odds win by 14 point(s) Evens win by 55 point(s) It's a tie!!! Odds win by 70 point(s) Evens win by 80 point(s) Evens win by 5 point(s) Odds win by 5 point(s)

Problem #5 60 Points

5. Christie

Program Name: Christie.java

Input File: christie.dat

Test Input File:

Test Output To Screen:

10 20 30 34 40 43 50 100 122 148 184 200 50 NONE 1 2 3 4 5 6 7 8 9 10 20 30 34 40 43 50 60 68 70 80 86 90 100 200 212 221 236 244 263 269 296 NONE 1000 1022 1048 1084 9935 9953 9999

Problem #6 60 Points

6. Claudius

Program Name: Claudius.java Input File: claudius.dat

Toot Innut Files	Turned a section of	Tost Output To Samoon.	
	~ <i>Inpui conunueu</i> ~ 5 5 100	Free at last Free	at last 3 hour (s) to share
6 7 15	5 5 100	Smokey the Bear is	en route
S MM V	·····	Free at last Free	at last 0 hour(s) to spare
MMMMV	••••	Free at last Free	at last $4 \text{ hour}(s)$ to spare
MMRV	Δ	Smokey the Bear is	en route
	л F	Free at last Free	at last 5 hour(s) to spare
	3 3 10	Smokey the Bear is	en route
MMM	S S I O SB	Smokey the Bear is	en route
5 5 12	V V	Smokey the Bear is	en route
S J IZ SMTTB	· · · F	Free at last Free	at last 3 hour(s) to spare
MMTTTD	3 3 100	Free at last, Free	at last 25 hour(s) to spare.
M TT	5 5 100	rice at iast, rice	at 1430. 25 Hour (3) to spare.
	0		
ARR E			
5 5 15	10 10 35		
SMTTT	S MMM VV		
MMTTT	MMMOVV		
M TT			
VVOOV	TTOTAL VVB		
ARR E	VV		
5 5 20			
SMTTT	VVVOVVVVO		
MMTTT	ΨΨΨΨΨΜΜ		
MMMTT	ΨΨΨΨ MMM		
VVOOV	BTTMMME		
ARR_E	10 10 65		
5 5 20	STTMMMTVVT		
SMTTB	TTTMMMOVVT		
MMTTT	TTTMMMOVVO		
MMMTT	TTTTRRTVVB		
VVOOV	00000ATVVT		
ARR.E	VVVTVVVVO		
10 10 35	vvvqvvvvq		
SMMM.VV.	TTTTTTTTMM		
MMMQVV.	TTTTTTTMMM		
TT.MMMQVVQ	BTTTTTMMME		
TTTTRR.VVB			
QQQQQA.VV.			
VVV.VVVVQ			
VVV.VVVVQ			
TTTTTMM			
TTTTMMM			
BTTMMME			
~ Input continues ~			
~ next column ~			

Problem #7 60 Points

7. Garold

Program Name: Garold.java

Input File: garold.dat

Test Input File:	~ Input continued ~	Test Output File:
10	OX.OX.OX.	Player X Won.
X.0000X0.	00.0X	XOX
OXX.XX.	0X0X.0000	ΧŌ
00XX00X	O.XO.X	X00
X.OX.00	XX.XXOXXO	Cotla Cama
X00.0.00.	XO.OXXO.X	Cal's Game.
XOO.OXX	X.OXXX	.OX
XXXOOO.OX	ХХ	0
00X.XO.	OXXXOXOOX	0.X
0.XXOXOOX	OX.OX.OX.	Player O Won.
X.0000X0.	00.00.X	000
0X.XX.		
00XX00X		
X.OX.00		Player O Won
.00.0.00.		o wom.
X00.0XX		0
X.0000X		XUX
00X.XO.		0
O.XXOXXXX		Player O Won.
00000000		0
	X.XX.O.	XOX
XX.XX.XX.	O.XO	0.0
XX.XX.XX.	XO.XO	Cat's Game.
XXX	.0.00	0
X.OX.OX.O	XOO	· · · · · · · · · · · · · · · · · · ·
OOXOOXOOX	X.XX	A.A
.OX.OX.OX	.OXO.	0.0
000	X.XO.	Cat's Game.
000X.0X.0	XOOX.	• • •
O.XO.X	X.XO.X.O.	
XX.XXOXXO	0.0.X.X.0	
XO.OXXO.X	X.XO.XO.O	Cat's Game.
X.OXOX	.0.00.0.0	
XX	0.X.00X.0	
XOXXOXOOX	X.X.O.X.O	•••
OX.OX.OX.	.00.X0.0X	 Catla Cama
00.0X	X.X.X.XO.	Cal's Game.
0X0X.0000	X.XOX.OX.	
O.XO.X	X.XOXX.00	.00
XX.XXOXXO	OXO.XOXXO	.X.
XO.OXXO.X	X.XO.XO.O	Cat's Game.
X.OXOX	.0000.0.0	Х.О
XX	OXX.OOXXO	.00
OXXXOXOOX	X.XXO.X.O	XX
	.00.X0.0X	2121 •
~ Input continues ~	XXX.X.XOO	
~ next column ~	X.XOX.OX.	
neat committe		

Problem #8 60 Points

8. Hannah

Program Name: Hannah.java

Input File: hannah.dat

Test Input File	:
3	

15													
15 Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7 Team_8 Team_9 Team_10 Team_11 Team_12 Team_13 Team_14 Team_14 Team_15 Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7 Team_8 Team_10 Team_11 Team_12 Team_10 Team_10 Team_11 Team_12 Team_10 Team_11 Team_12 Team_11 Team_11 Team_12 Team_11	2A 5A 6A 1A 5A 4A 6A 1A 6A 4A 3A 5A 3A 5A 2A 184 199 136 93 0 180 174 226 92 234 136 185 68 230 75	60 35 30 40 0 35 35 30 35 45 0 60 50 35 155 192 177 75 210 220 92 55 196 170 220 92 55 196 170 178 112 -12 121 97	40 50 30 40 55 35 0 45 35 45 0 30 0 45 55 70 203 229 121 235 234 131 235 145 185 84 116 146 53	30 30 45 0 30 45 45 35 55 0 35 55 0 60	60 45 55 40 55 60 0 60 35 45 50 60 0	55 50 30 0 55 30 60 40 40 0 45 60 35 40 60	50 50 35 30 45 30 0 35 60 40 0 55 30 40 50	30 30 35 40 0 60 55 30 30 30 0 40 45 60	30 60 40 55 0 50 40 50 45 55 30 0 40 35	55 50 30 40 35 45 55 0 60 55 40 60 50 0 30	35 50 0 55 60 55 30 35 30 35 40 35 40 35 60 0	50 0 40 30 40 40 30 45 35 60 60 35 45 45	0 300 55 50 55 55 60 30 55 55 60 30 55 35 35 35 35
20 Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7 Team_8 Team_9 Team_10 Team_11 Team_12 Team_13 Team_14 Team_15 Team_16 Team_17	2A 5A 6A 1A 5A 4A 6A 1A 2A 4A 3A 5A 3A 5A 2A 4A 3A	50 60 30 30 45 45 30 40 35 0 60 40 40 30	30 30 50 35 0 60 35 50 0 45 0 55 30 55	55 35 50 40 35 30 35 0 30 0 45 45 50 0 55 50	30 60 50 30 55 40 30 40 0 60 30 45 30 40 0 60 55	35 45 30 35 35 0 35 0 35 50 55 35 30 0 55	55 50 55 30 55 0 45 30 55 0 45 50 30 50 50 0	30 30 45 50 40 0 60 35 30 35 45 0 50 30 60 50 40	40 30 35 0 35 55 30 55 35 35 35 35 35 30 30 30	55 30 35 0 50 60 30 60 45 40 35 40 30 0 55 30 55	35 35 40 45 60 30 45 30 45 35 35 35 55	30 0 55 40 60 60 60 30 60 45 55 35 50 50	0 555 600 600 600 455 400 555 300 550 0
Team_18	6A	40	60	30	50	35	45	0	30	40	55	0	60

Team_18 6A 40 60 30 ~ Hannah Input continues next page ~

~ Hannah	Input co	ntinued -	~										
Team_120 Team_2 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7 Team_8 Team_9 Team_10 Team_11 Team_12 Team_13 Team_14 Team_15 Team_16 Team_17 Team_18 Team_19 Team_20 30	6A 98 134 215 180 0 148 218 73 112 193 59 94 210 231 237 -2 144 168 64 195	40 222 208 128 67 206 141 202 205 103 226 138 176 -12 133 183 113 99 56 73 93	30 156 140 62 132 210 75 174 231 187 131 193 205 75 200 121 196 133 226 57 235	40	40	50	45	35	55	0	55	30	60
Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7 Team_8 Team_9 Team_10 Team_11 Team_12 Team_13 Team_14 Team_14 Team_15 Team_16 Team_17 Team_18 Team_19 Team_20 Team_20 Team_21 Team_22 Team_23 Team_24 Team_25 Team_26 Team_27 Team_28 Team_28 Team_29 Team_30 Team_1 Team_2 Team_30 Team_1 Team_2 Team_30 Team_1 Team_2 Team_30 Team_1 Team_2 Team_3 Team_4 Team_2 Team_3 Team_4 Team_2 Team_3 Team_4 Team_2 Team_3 Team_4 Team_2 Team_3 Team_4 Team_3 Team_4 Team_3 Team_4 Team_3 Team_4 Team_3 Team_4 Team_3 Team_4 Team_3 Team_4 Team_3 Tea	1A 3A 2A 4A 6A 1A 5A 3A 6A 1A 2A 4A 2A 4A 2A 5A 3A 5A 2A 4A 3A 6A 1A 3A 6A 1A 2A 4A 3A 6A 1A 2A 4A 3A 6A 1A 5A 3A 6A 1A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 4A 2A 4A 2A 4A 2A 4A 2A 4A 2A 4A 2A 4A 2A 3A 5A 3A 6A 1A 2A 4A 2A 3A 5A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 4A 2A 2A 4A 2A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 3A 6A 1A 2A 4A 2A 3A 6A 1A 2A 4A 2A 2A 4A 2A 3A 6A 1A 2A 4A 2A 2A 4A 2A 2A 2A 4A 2A 2A 4A 2A 2A 4A 2A 2A 4A 2A 2A 2A 2A 2A 1A 2A 2A 2A 1A 2A 2A 2A 1A 2A 2A 2A 1A 2A 2A 2A 1A 2A 2A 2A 1A 2A 2A 2A 1A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A	$\begin{array}{c} 40\\ 60\\ 25\\ 60\\ 50\\ 20\\ 50\\ 55\\ 40\\ 45\\ 50\\ 45\\ 60\\ 30\\ 60\\ 40\\ 60\\ 25\\ 55\\ 60\\ 60\\ 25\\ 55\\ 60\\ 60\\ 0\\ 30\\ 35\\ 50\\ 50\\ 50\\ 50\\ 50\\ 60\\ 40\\ 60\\ 108\\ 118\\ 116\\ 166\\ 166\\ 162 \end{array}$	$ \begin{array}{r} 0 \\ 55 \\ 55 \\ 20 \\ 45 \\ 55 \\ 50 \\ 0 \\ 30 \\ 30 \\ 55 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 25 \\ 30 \\ 0 \\ 55 \\ 30 \\ 112 \\ 138 \\ -6 \\ 8 \\ 174 \\ 60 \\ 102 \\ \end{array} $	50 50 55 35 25 25 60 50 30 25 40 60 60 60 50 50 50 40 60 60 60 50 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 50 40 60 55 55 50 40 60 55 55 35 55 35 55 35 55 55 35 50 50 70	$\begin{array}{c} 0 \\ 35 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ $	35 35 50 30 40 0 25 50 50 55 60 35 60 55 55 60 60 30 55 60 30 55 55 60 60 30 55 55 60 60 55 55 55 60 60 55 55 60 55 55 60 60 55 55 60 60 55 55 60 60 55 55 60 60 55 55 60 60 55 55 60 60 55 55 60 60 55 55 60 55 55 60 55 55 55 60 55 55 55 60 55 55 50 55 55 50 55 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 70	$\begin{array}{c} 0 \\ 20 \\ 25 \\ 60 \\ 55 \\ 60 \\ 60 \\ 50 \\ 50 \\ 50 \\ 5$	$\begin{array}{c} 0 \\ 35 \\ 40 \\ 50 \\ 50 \\ 60 \\ 35 \\ 45 \\ 35 \\ 20 \\ 45 \\ 60 \\ 35 \\ 60 \\ 30 \\ 50 \\ 35 \\ 40 \\ 60 \\ 20 \\ 50 \\ 55 \\ 20 \\ 60 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 20 \\ 65 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 5$	$\begin{array}{c} 0 \\ 25 \\ 35 \\ 55 \\ 60 \\ 50 \\ 35 \\ 25 \\ 0 \\ 55 \\ 40 \\ 50 \\ 55 \\ 40 \\ 60 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 60 \\ 50 \\ 5$	$\begin{array}{c} 0 \\ 55 \\ 0 \\ 50 \\ 45 \\ 50 \\ 60 \\ 40 \\ 55 \\ 55 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 6$	$\begin{array}{c} 55\\ 20\\ 50\\ 40\\ 25\\ 50\\ 25\\ 25\\ 50\\ 55\\ 0\\ 40\\ 60\\ 30\\ 45\\ 0\\ 20\\ 25\\ 60\\ 60\\ 50\\ 35\\ 40\\ 50\\ 20\\ 25\\ 60\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 5$	$\begin{array}{c} 55 \\ 60 \\ 45 \\ 50 \\ 40 \\ 60 \\ 50 \\ 35 \\ 50 \\ 35 \\ 50 \\ 35 \\ 60 \\ 60 \\ 60 \\ 50 \\ 60 \\ 50 \\ 60 \\ 50 \\ 60 \\ 55 \\ 60 \\ 45 \\ 60 \\ 55 \\ 60 \\ 45 \\ 60 \\ 55 \\ 60 \\ 45 \\ 60 \\ 55 \\ 60 \\ 45 \\ 55 \\ 60 \\ 45 \\ 55 \\ 60 \\ 55 \\ 55$	$\begin{array}{c} 0 \\ 30 \\ 50 \\ 55 \\ 25 \\ 45 \\ 60 \\ 50 \\ 50 \\ 50 \\ 55 \\ 60 \\ 55 \\ 50 \\ 25 \\ 60 \\ 55 \\ 40 \\ 55 \\ 50 \\ 50 \\ $

Team_7 149 162 102 Team_8 118 -4 138

~ Hannah Input continues next page ~

~ Hannah Input continued ~					
Team 9 150	160	174			
Team_10	74	58	12		
Team_11	168	4	66		
Team 12	80	58	122		
Team 13	34	26	140		
Team 14	108	94	22		
Team 15	124	168	192		
Team 16	108	74	178		
Team_17	94	52	48		
Team 18	18	28	28		
Team 19	66	58	-6		
Team_20	148	74	56		
Team 21	174	238	170		
Team 22	84	182	204		
Team 23	158	96	184		
Team 24	198	226	192		
Team_25	-2	-18	120		
Team 26	66	90	92		
Team 27	80	134	-16		
Team 28	240	214	148		
Team_29	92	6	64		
Team_30	-14	82	60		

Test Output To Screen:

Classification 1A Results Team 8 990 Team 4 719 Classification 2A Results Team 1 904 Team 15 690 Classification 3A Results Team_11 914 Team 13 607 Classification 4A Results Team 10 989 Team 6 951 Classification 5A Results Team 2 1074 Team 14 967 Team 5 938 Team 12 866 Classification 6A Results Team 7 971 Team 3 952 Team 9 936 _____

~ Output continues next column ~

~ Output continued ~

Classification 1A Results Team 8 974 Team 4 789 Classification 2A Results Team 15 966 Team_1 921 Team 9 827 Classification 3A Results Team 17 856 Team 11 770 Team 13 723 Classification 4A Results Team 10 1045 Team 6 844 Team 16 787 Classification 5A Results Team 14 974 Team 2 942 Team 12 920 Team 5 871 Team_19 619 Classification 6A Results Team_7 1034 Team_20 1003 Team 3 955 Team 18 895 _____

~ Output continues next column ~

~ Output continued ~ Classification 1A Results Team 6 831 Team 29 642 Team 10 639 Team_25 625 Team_1 427 Classification 2A Results Team_11 748 Team_14 704 Team_30 668 Team_3 608 Team 18 274 Classification 3A Results Team 2 782 Team 16 780 Team 20 753 Team 27 728 Team 8 727 Classification 4A Results Team 13 905 Team_4 900 Team_26 753 Team_12 735 Team 19 583 Classification 5A Results Team 15 1199 Team 22 1190 Team 23 958 Team_7 918 Team 17 749 Classification 6A Results Team 21 1302 Team 24 1156 Team 5 1066 Team 28 1042 Team_9 904

Problem #9 60 Points

9. Jennifer

Program Name: Jennifer.java

Input File: jennifer.dat

Test Input File:	~ Continued from previous column ~	~ Continued from previous column ~
100	870984655 1778788730	1059488218 1809069450
6566832 121145770	80613417 343930959	56085700 154169082
83861962 442503106	231238458 1135011902	181819842 767112261
954031266 1094811092	1315674738 1974795566	1564085536 1903994738
45293078 166717738	320324560 1600968358	42662540 1645582052
2041679849 2051287937	933602314 1466438475	570530952 1445749704
118972420 131203543	762175654 893973068	347970801 703110078
492026934 2018339073	398621129 637745208	907566567 1157757762
403555292 428253450	1039056990 1988629744	447972464 841885956
1412489584 1613378470	1277220863 1307845751	1395042915 1737711579
139012142 1724168390	1064490506 1074152800	311949483 390783117
552240742 2110576592	1020619605 1152752823	47810358 90921572
281255322 951072450	242432542 373337021	770089248 1567242801
859321883 957444255	143839145 260670817	614200688 809979282
274366090 620828416	9815980 104188886	786488504 1571970222
586686040 1971371564	1239319164 1855656828	314369069 1125457360
403964028 1891366538	774603920 1843858954	934961646 1864537989
287906686 489722942	813314259 984710313	627823017 1428963549
1888329621 2041472043	91101705 383785520	805366830 1652537354
1039142254 1159045233	860465117 1379072158	904687088 1225694790
1589584142 1639342802	155668090 270424562	230201662 1105113400
102441350 161340376	219265970 465134385	860579400 1490214882
45178196 1003705622	855118748 1696944514	172945670 346481712
892968896 993227524	166849739 203356696	1103254784 1229443878
240228386 2019547860	1536947438 1941912037	6499731 140980112
1040730895 1520767030	296616854 591556110	9293788 1646566148
124764482 192906424	129880080 184867876	44008480 307651315
535660106 994397938	438738386 1654317372	668075542 864876978
853091572 1301584638	1718122772 1872524084	32296544 107777380
156996174 741312444	1067450633 1608430938	758915928 1385969262
218627280 1173472908	1421519118 1522747380	1959356720 2036638134
952245152 1535727236	517195976 1038813464	1833754569 1862334444
480278570 1986472482	67277122 1775369472	1660586130 1916603296
198962396 952552345	117942594 965052676	
~ Input continues next column ~	~ Input continues next column ~	

~ Jennifer Output next page ~

~ Jennifer Output ~

Test Output To Screen:	~ Continued from previous column ~
57289469 3283416	19044006 90368251
179320572 41930981	58536763 18220341
70389913 477015633	518607041 860465117
60712330 22646539	57378236 77834045
9608088 2041679849	49173683 43853194
12231123 118972420	420912883 427559374
508770713 164008978	36506957 166849739
12349079 201777646	31151123 118226726
9131313 64204072	147469628 148308427
792578124 69506071	13746949 32470020
779167925 276120371	607789493 219369193
111636188 46875887	38600328 429530693
98122372 859321883	6517835 12860851
173231163 137183045	411497 5778533
346171381 146671510	65202186 64649497
743701255 201982014	854046175 33638561
100908128 143953343	60507863 8424471
51047474 629443207	374790616 529744109
5213173 45180098	49041691 28042850
1081710 34556177	195097473 60606614
29449513 51220675	169954601 782042768
479263713 22589098	400729878 10665635
25064657 223242224	12155816 7924041
889659737 120114193	118379759 115990267
96007227 208146179	83397065 302522189
34070971 62382241	98478373 111993116
229368916 267830053	114222888 465014305
224246533 426545786	26277878 103983161
97386045 26166029	21555607 23905179
79570469 18218940	88572617 85565472
145870521 238061288	97889297 307100344
753096956 240139285	392740859 393244252
12772711 3372244	811088291 314369069
181560815 174196931	309858781 311653882
87772514 26871139	267046844 209274339
451886722 115619229	423585262 402683415
329560414 657837369	160503851 452343544
640321899 160162280	437455869 115100831
532836161 933602314	104939247 143429900
65898707 381087827	86/68021 864/2835
239124079 398621129	63094547 551627392
4/4/863// 519528495	19211483 928533
1801464 /5130639	409318090 2323447
4831147 532245253	52/2856/ 8801696
44044406 340206333	904UU/L0 334U3///L
130904479 242432542	10450000 106405000
1100310/2 143039143	104308889 126485988
4/1004JJ 490/990 51261/72 102076507	2004U/U/ 2/20/836U 0526625 611251522
JIJUI4/2 IUJ2/0J3/ 52/627517 207201060	JJ2002J 0II2JIJ2J 190000502 030909065
	120000000 030293000
\sim Output continues next column \sim	

Problem #10 60 Points

10. Leah

Program Name: Leah.java

Input File: leah.dat

Test Input File:	Continued from previous column	Continued from previous column
32	8	1
6	6	6
4	5	6
7	6	3
8	3	3
8	1	8
5	8	6
1	4	6
7	3	5
5	6	8
2	7	1
Continues next column	Continues next column	

Test Output To Screen: (indented lines are continuation of previous line)

- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215 214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248 232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166 167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181 183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215 214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248 232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166 167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181 183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16

~ Continues next page ~

⁰

~ Leah continued from previous page ~

- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 0 1 3 2
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215 214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248 232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166 167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181 183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4
- 0 1
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215 214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248 232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166 167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181 183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8
- 0 1 3 2 6 7 5 4
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64
- 0 1
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4
- $0 \ 1 \ 3 \ 2 \ 6 \ 7 \ 5 \ 4$

~ Continues next page ~

~ Leah continued from previous page ~

- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215 214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248 232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166 167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181 183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
- 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122 126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215 214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248 232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166 167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181 183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128 0 1

16

Problem #11 60 Points

11. Lucas

Program Name: Lucas.java

Input File: lucas.dat

Test Input File:

10 965 1200 1315 950 1408 2201 1534 1232 1236 1238 1240 1300 1303 1220 1251 1332 1299 1600 1200 1300 1400 1500 1 6061 1199 1200 1234 1324 1423 1342 1432 1243 1500 1500 1500 1500 2 2222

Test Output To Screen:

18:02 23:28 31:07 21:02 23:20 0:01 101:01 19:59 22:13 25:00

Problem #12 60 Points

12. Veda

Program Name: Veda.java

Input File: veda.dat

Test Input File (indented lines are continuation of previous line): 14 R, T, X:1.707920 A:0.053530 G:2.398230 P,Y:4.148970 H, J:6.799730 S:0.596120 F,0:6.100260 B, E, I:0.548650 D,V,L,N:0.654870 Q,C,M:9.904010 W:4.564600 U:8.875370 K:5.540460 Z:5.283880 43 UNIVERSITY INTERSCHOLASTIC LEAGUE COMPUTER SCIENCE IS THE BEST SCIENCE A RUBBER DUCK IS A PROGRAMMER'S BEST FRIEND!!!! WOULD YOU RATHER HAVE UNLIMITED BACON, BUT NO GAMES, OR GAMES, UNLIMITED GAMES, BUT NO GAMES? ROAD WORK AHEAD... UH, YEAH, I SURE HOPE IT DOES NEVER GONNA GIVE YOU UP, NEVER GONNA LET YOU DOWN POLYPHIA IS A FANTASTIC GROUP TO LISTEN TO WHILE WORKING, PROGRAMMING, OR DOING SOMETHING THAT REQUIRES FOCUS MATRICULATION IS THE PROCESS OF GOING FROM YOUR BACHELOR'S TO YOUR MASTER'S DEGREE WHY DO ALL CONTRACTORS ALWAYS SAY THAT IT'LL TAKE TWO WEEKS TO FINISH A PROJECT? IN REALITY, IT NEVER DOES. DAD, I'M HUNGRY. HI HUNGRY, I'M DAD EAMJFGPPNDISFPVFJJFGXOHRRRMSDVTPXLRDKSUIPXJGVNPF EDMBIPDKNLFB PFTOJODVALGFIMCDGKKEKU OIFBLGQYNFQPHPNOSRGIFIPIFPXZJQFZSPMJFVAVVAUME HCEOMTAIGZDOGDZJMRMCWJSOOXZXAKUYTHDOKFMIN EPEXPGPSJZRHVJRDZVFDHRCUOI ALTVHVWODAJJNRS OWNCNOW KEBOIZJVKZAOXOFNVHEMKYHGO CNPDNXKKFOMWQGDHJYOVRARSCRHCVRMYDMUTDRIUOCAGTHYFFE W JVLZIFNCBVFUEQLXGHNYHGCCPUVDLLMPGACJBTTNNIBXYOSQDQ IETLVJYKUWURVATVHQDAPIFIRPOLEMFUMZHXFGLJTHELEXWKD XJZZUZSLRVWJBGDFCDEMZZ DVABWKTSQQTPLLEFDYSJWKVFM SGCRSVPVGO MQAEDUHSSPNYLFSWSBMFGJLWK ~ Input continues next page ~

~ Veda input continued ~ NARKAEUOMNRBGKMXWMW KQEOGUGFXWIWEPNWQO В AQPHVTPHGWGF JILYDIETM LGDOYHNC JFRSKLUYVE TDEKYDRWFDXHCTTDEUSUJG PFVMVODSEMVWTGTVWNEUXZFMWSPZHUII BDDNGWXQDQQDZXZ INWRTSRJHUKDDNPKQPQAKJFNELGQHXUVGHK WDUYSOOPEKMHBWDVARHSOPUDWU NEOVJDK WTJNKBARWEPPBDTXRR DEUGEYGBHXIYFDKVDSBSZYVFIAQZJDVQACZSYQHVXX CBKBLPGLNVSFUMVCCEKOVAEPOYALOOJGJGDJCFXSLCHTKX

Test Output To Screen:	~ Continued from previous column ~
\$75.10	\$190.84
\$101.91	\$176.87
\$92.56	\$89.49
\$223.60	\$86.91
\$101.80	\$32.96
\$98.26	\$95.91
\$280.55	\$74.93
\$222.25	\$79.17
\$203.38	\$0.55
\$80.15	\$49.68
\$159.96	\$25.52
\$30.51	\$31.32
\$90.93	\$35.63
\$179.79	\$76.86
\$186.05	\$119.96
\$99.09	\$54.48
\$38.46	\$140.55
\$36.35	\$106.78
\$108.07	\$20.95
\$218.52	\$43.02
\$4.56	\$139.43
~ Continues next column ~	\$182.87