
UIL – Computer Science Programming Packet - District - 2024

 1

Computer Science Competition

District 2024
Programming Problem Set

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. All problems have a value of 60 points.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise
specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number Name
Problem 1 Ada
Problem 2 Ariel
Problem 3 Bodhi
Problem 4 Caroline
Problem 5 Christie
Problem 6 Claudius
Problem 7 Garold
Problem 8 Hannah
Problem 9 Jennifer

Problem 10 Leah
Problem 11 Lucas
Problem 12 Veda

UIL – Computer Science Programming Packet - District - 2024

 2

1. Ada
 Program Name: Ada.java Input File: None

Ada Lovelace, a.k.a Augusta Ada King and the Countess of Lovelace and the daughter of one of the greatest British poets Lord
Byron, was also a pioneer in the discipling of computing. She worked with Charles Babbage in the 1830s on his Analytical
Engine which was a follow-on to his simpler Difference Engine, a mechanical calculator.

Ada recognized that the Analytical Engine could be “programmed”, making it a general-purpose computer. Even though she
worked with a mechanical device, not electronic as are modern computers, and her “programming” involved mechanical
switches, she is recognized as the world’s first programmer!

Write a program that displays the following exact message at the left edge of the screen:

Ada Lovelace – World's First Computer Programmer!

Input: None.

Output: Exact statement shown above.

Sample input: None

Sample output:
Ada Lovelace – World's First Computer Programmer!

UIL – Computer Science Programming Packet - District - 2024

 3

2. Ariel
 Program Name: Ariel.java Input File: ariel.dat

Your friend Ariel is an architectural student studying subway systems, and they need your help with their homework. They need
to plan out a subway stop, and they have been given the times that all the trains will be arriving and departing from the stop.
Write a program to determine the minimum number of train stops required to ensure that there are no delays, in other words,
every train should arrive when there is at least one open stop.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case
will consist of two lines of space separated strings denoting the arrival times of all trains on the first line, and departure times of
all trains on the second line, all in the format "H:MM", and all minutes will be multiples of 5. The ith index in both lists
correspond, as in, all arrival times and departure times in the same index in their respective lists refer to the arrival and departure
of the same train. There will never be two trains with the same arrival AND departure time, although trains may share the same
arrival OR departure. It can be assumed that the trains operate on a 24-hour cycle, so trains arrive and leave at the same time
every day.

Output: Output the integer denoting the minimum number of train platforms required so that the current train schedule will
have no delays for trains when arriving. If one train arrives at the same time that another train departs, then you will only need
one platform (the train engineers have been specifically trained for these situations at the same school as those two guys from the
Polar Express).

Sample input:
3
9:30 9:45 9:50 10:30 11:30 12:00
10:00 10:05 10:15 11:00 12:00 12:10
0:00 1:00 2:00 3:00 4:00
0:10 1:10 2:10 3:10 4:10
8:15 8:25 8:30 8:35 8:40 8:45 9:00
8:25 8:40 8:45 8:45 8:55 9:00 9:30

Sample output:
3
1
3

UIL – Computer Science Programming Packet - District - 2024

 4

3. Bodhi
 Program Name: Bodhi.java Input File: bodhi.dat

Bodhi’s older sister is studying finance in college and was showing Bodhi the concept of financial compounding. It is a type of
investment, like a savings account, where the profit earned is put right back into that same investment. The result is you earn
even more profit from the previous profit in addition to profit from the original investment. He thought that sounded rather
interesting but wants to see the concept in action, meaning, show me the money!

With PV as the present value or a fixed amount that is invested only one time and FV as the future value after n compounding
periods (addressed below), the simple compounding formula is:

FV = PV (1 + rate)n

The compounding period could be days, months, quarters, years, or some other fixed period of time and defines when interest
profit is calculated and put back into the account. It can get confusing comparing options so most investments state an annual
percentage rate (APR) which is the result of the periodic compounding after 1-year.

For the formula above, rate is the APR divided by the number of compounding periods in a year. It is a periodic rate that
matches the compounding period. To obtain a monthly rate, simply divide the APR by 12 monthly periods in a year and a
quarterly or 3-month rate would be APR divided by 4. In addition, the standard formula requires the percentage rates be
converted into their equivalent decimal form so a 5.25% rate becomes 0.0525.

The total profit after n periods would simply be the difference between the future value (FV) which is the end of the investment
and the original investment (PV) which is the initial investment.

Input: First line will contain an integer T with 1 ≤ T ≤ 10, the number of test cases. Each test case will consist of one set of
whitespace-separated investment parameters on a single line. The investment parameters are PV, a dollar and cents amount no
larger than $1,000,000 followed by an APR which is a percentage greater than 0.00% and will not exceed 25.00% (which would
be a dream rate!). The final pieces of data for a single test case are the number of periods in a year in the range [1, 366] and n,
the number of periods to compound which will not exceed 100.

Output: Each test case will produce 1 line of output containing the computed FV which is a dollar and cents amount and the
total profit, neither of which will not exceed $3,000,000.00. Format both values with a leading dollar sign ($) and round to 2
decimal places of accuracy and separated by a single space as shown in the sample output.

Sample input:
3
3500.00 5.25 12 15
100.00 7.95 4 40
9999.99 9.99 2 20

Sample output:
$3736.86 $236.86
$219.72 $119.72
$26507.69 $16507.70

UIL – Computer Science Programming Packet - District - 2024

 5

4. Caroline
 Program Name: Caroline.java Input File: caroline.dat

Caroline's teacher in her AP Psychology class told her that if someone is asked to select a random number, it is more likely that
the number will be an even number. Her class ran an experiment to verify this, and they discovered it was true.

She got to thinking. What if ten people selected a random number, would the sum of the even numbers be greater than the sum
of the odds?

So, she has asked you to write a program to answer that question. Your job is to read in a list of ten whole numbers. Find the
sum of the odd numbers in the list. Also find the sum of the even numbers in the list. Compare the two sums and let the world
know your findings.

Input: Line #1 will consist of one integer N in the range [1,25] which indicates how many lines of data will follow. Each of the
N lines of data will contain ten whole numbers in the range [0,9999]. The numbers in each data set will be separated by one
whitespace.

Output: Output one of the three messages for each date set.

• If the even sum is greater, print "Evens win by ? point(s)" where ? is filled with the positive difference
between the two sums.

• If the odd sum is greater, print "Odds win by ? point(s)" where ? is filled with the positive difference
between the two sums.

• If the sums are equal, print the message "It's a tie!!!"

Sample input:
5
12 13 14 15 23 24 25 26 55 62
7 7 7 7 7 7 7 7 28 28
2 3 2 3 2 3 2 3 2 3
5 1 2 8 6 7 5 3 0 9
11 22 33 44 55 66 77 88 99 110

Sample output:
Evens win by 7 point(s)
It's a tie!!!
Odds win by 5 point(s)
Odds win by 14 point(s)
Evens win by 55 point(s)

UIL – Computer Science Programming Packet - District - 2024

 6

5. Christie
 Program Name: Christie.java Input File: christie.dat

Christie is so intrigued with numbers and their properties. She of course adores prime numbers (and who doesn't?), but she also
is very interested in other types of numbers like Fibonacci Numbers, Happy Numbers, Evil Numbers, Fermat numbers, etc. She
is determined to create her own special numbers and name them Christie Numbers.

So, this is what she has decided to do.

A Christie Number is a whole number in which the sum of the squares of the digits is a perfect square.

Example: 148 is a Christie Number:

12 + 42 + 82 = 1 + 16 + 64 = 81

Since 81 is a perfect square, 148 is a Christie Number.

Christie will give you two integers A and B where you are guaranteed that A < B. Your task is to check every natural number
from A to B (inclusive) and to list the Christie numbers in that range in order from smallest to greatest.

Input: Line #1 will consist of one integer N in the range [1,25] which indicates how many lines of data will follow. Each of the
N lines of data will contain two integers A, then B. Both numbers are in the range [1,9999].

Output: Output a list of Christie Numbers in the range [A,B] written horizontally with one white space in between each. If
there are no Christie numbers in that range, print "NONE".

Sample input:
5
10 20
30 50
100 200
50 55
41 42

Sample output:
10 20
30 34 40 43 50
100 122 148 184 200
50
NONE

UIL – Computer Science Programming Packet - District - 2024

 7

6. Claudius

 Program Name: Claudius.java Input File: claudius.dat

You and Claudius are lost in the woods! Quick, write a program on your handy dandy pocket computer to find the shortest path
out of the woods! You have a map of the woods, with different geological features and the parking lot marked, and you need to
determine if you will escape from the woods before the Forest Rangers come to find you. This map is magic, and will also
contain the locations of certain dangerous animals and areas to avoid. The map will be made up of the following characters:

● 'M' – denotes the location of a mountainous region on the map, these areas can be crossed at a rate of 3 hours per
space.

● 'T' – denotes the location of a forested area of the map, these areas can be crossed at a rate of 2 hours per space.
● 'R' – denotes the location of a rock/boulder, these areas are impassable.
● 'Q' – denotes the location of quicksand, these areas are impassable, unless they are directly adjacent (up, down, left,

right) to a forested area, in which case you can cross at a rate of 3 hours per space, as you can use the trees to climb out
if you get stuck.

● 'V' – denotes the location of a river, these areas are impassable.
● 'A' – denotes the location of an alligator, which you must stay at least one block away from (you cannot be adjacent in

any direction including diagonals).
● '.' – denotes a path/trail/dirt patch which can be passed at a rate of 1 space per hour.
● 'S' – denotes your starting point on the map.
● 'E' – denotes the parking lot, which is the end point of your journey.
● 'B' – denotes the location of a bear, which you must be at least 2 spaces away from at all times, including diagonals.

You can only move in the 4 cardinal directions (up, down, left, right).

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case
will begin with 3 space-separated integers, r, c, and h, denoting the number of rows and columns in the map of the woods, and
the number of hours you have until the Forest Rangers come looking for you. The following r lines will each contain c
characters denoting the map of the woods.

Output: If you make it to the parking lot in h or less hours, output the string "Free at last, Free at last. ",
followed by the number of hours you had left until the Forest Rangers will look for you (could be 0), followed by the string "
hour(s) to spare.". If you do not make it to the parking lot in time, output the string "Smokey the Bear is en
route.".

Sample input:
2
6 7 15
S..MM.V
..MMMMV
...MMRV
VV.VVVV
A...QQE
MMM....
5 5 12
SMTTB
MMTTT
M..TT
VVVVV
ARR.E

Sample output:
Free at last, Free at last. 3 hour(s) to spare.
Smokey the Bear is en route.

UIL – Computer Science Programming Packet - District - 2024

 8

7. Garold
 Program Name: Garold.java Input File: garold.dat

You and your friend Garold have been playing a game called super tic tac toe. The main issue you have been having is that the
board is somewhat confusing and you never know who’s won. You need to write a program to take in a given super tic tac toe
board and find out who has won. The rules of super tic tac toe are as follows:
Each super tic tac toe board will be made up of 9 regular tic tac toe boards, arranged with one regular board making up a cell. In
order to win super tic tac toe, you need to win 3 of the regular boards in a row (so if you win the top 3 boards you win super tic
tac toe). You can win if you get all of any column, row or either of the diagonals. To win each board, you need to win a row,
column or diagonal, just like in regular tic tac toe. You need to output who wins the game.

Input: The input will begin with an integer, n (0 < n <= 1000), denoting the number of test cases to follow. Each test case
will consist of 9 lines of 9 characters each, made up of 'X' – denoting an X on the board, 'O' – denoting an O on the board,
'.' – denoting an empty space on the board. Every 3x3 characters of input denote a board (top left 3x3 denotes the top left
board on the super tic tac toe board, and so on). Each 3x3 board will have a maximum of one winner, but there is no guarantee
that the overall board is won by either team.

Output: If one of the players has won the game, output the string "Player ", followed by an X or an O, denoting which
player won, followed by "Won.". If neither player has won the game, output "Cat's Game.". After outputting this string,
output the the layout of the super board, with each 3x3 board denoted by an X, O, or ., denoting the winner if the board was
won, or a . if no one has won the board. See the Sample output for more information.

Sample input:
2
X.OOOOXO.
OX..X.XX.
OOXX..OOX
X.O..X.OO
XOO.O.OO.
X..OO.OXX
XXXOOO.OX
OO..X.XO.
O.XXOXOOX
X.OOOOXO.
O...X.XX.
OOXX..OOX
X.O..X.OO
.OO.O.OO.
X..OO.OXX
X.OOO..OX
OO..X.XO.
O.XXOXXXX

Sample output:
Player X Won.
XOX
X.O
XOO
Cat's Game.
.OX
..O
O.X

UIL – Computer Science Programming Packet – District - 2024

9

8. Hannah
 Program Name: Hannah.java Input File: hannah.dat

Hannah is practicing her programming skills for the upcoming UIL Computer Science contest season. She heard that the State
contest experience is very challenging and wants to be prepared. Her coach explained how the overall state scores are grouped
by classifications (1A, 2A, 3A, 4A, 5A, 6A) and are a combination of both programming and the written test. Each contest team
consists of 3 students that take the written test with 40 questions which has a max score of 240 but could be negative when
students answer too many questions incorrectly; there is no penalty for unanswered questions. The max team score for the
written test is 720, or 3 scores of 240 points. The programming component of the contest consists of 12 problems worth a max
of 60 points each but submissions that are not correct reduces the problem’s max score by 5 points for each bad submission. The
team programming score is another 720 points, or 12 programs of 60 points. The overall team score is simply the sum of the
written and programming scores.

The following table is a sample of the programming data.

Prog
Scores Class

Prob
1

Prob
2

Prob
3

Prob
4

Prob
5

Prob
6

Prob
7

Prob
8

Prob
9

Prob
10

Prob
11

Prob
12

Team 1 2A 55 60 50 60 60 60 60 60 60 60 0 60
Team 2 5A 60 60 60 60 60 55 60 60 50 0 60 55
Team 3 6A 60 50 60 55 60 60 60 60 0 60 60 45

The following table is a sample of the written test data.

Test
Scores Student 1 Student 2 Student 3
Team 1 200 210 184
Team 2 104 172 224
Team 3 86 164 196

Hannah has accepted a challenge of processing the raw scores to determine the top 3 teams in each classification. It is just
summing the scores and finding the 3 top overall team scores in each classification. Ties are not common so we will ignore that
possibility for this program. Can you handle her challenge?

Input: First line will contain an integer T with 1 ≤ T ≤ 10, the number of test cases. Each test case will start with a positive
integer N which is the total number of teams. The N following lines will each contain a school name with no spaces, a
classification as shown above, and 12 integers in the range [0,60], all items whitespace-separated. Those lines are then followed
by N more lines each containing a school name with no spaces and 3 integers in the range [−80,240], all whitespace -separated.
Team names will be in the same order for both sets of scores but classification levels may vary in order. There is guaranteed to
be 1 or more teams for each classification and they must have 12 program scores and 3 written exam scores.

Output: Each test case will produce a list of the team names and scores in descending order for each classification, organized
from 1A to 6A. Label and format the results as shown in the sample below. Display a single line following each test case
containing 15 equal signs “===============”.

Sample input:
2
15
Team_1 2A 60 40 30 60 55 50 30 30 55 35 50 0
Team_2 5A 35 50 30 45 50 50 30 60 50 50 0 30
Team_3 6A 35 30 45 45 30 35 30 40 30 0 40 50
Team_4 1A 30 40 0 55 0 30 35 55 40 55 30 60
Team_5 5A 40 55 30 45 55 45 40 0 35 60 40 55

~ Input data continues on next page ~

UIL – Computer Science Programming Packet – District - 2024

10

~ Hannah input continued ~
Team_6 4A 0 35 45 40 30 30 0 50 45 55 40 50
Team_7 6A 35 0 45 55 60 0 60 50 55 30 30 50
Team_8 1A 35 45 35 60 40 35 55 40 0 30 45 55
Team_9 6A 30 35 55 0 40 60 30 50 60 35 35 55
Team_10 4A 35 45 0 60 0 40 30 45 55 35 35 60
Team_11 3A 45 0 35 35 45 0 30 55 40 40 60 30
Team_12 5A 0 30 55 45 60 55 0 30 60 35 60 55
Team_13 3A 60 0 55 50 35 30 40 0 50 45 35 35
Team_14 5A 50 45 0 60 40 40 45 40 0 60 45 45
Team_15 2A 35 55 60 0 60 50 60 35 30 0 45 35
Team_1 184 155 70
Team_2 199 192 203
Team_3 136 177 229
Team_4 93 75 121
Team_5 0 210 228
Team_6 180 220 131
Team_7 174 92 235
Team_8 226 55 234
Team_9 92 196 163
Team_10 234 170 145
Team_11 136 178 185
Team_12 185 112 84
Team_13 68 -12 116
Team_14 230 121 146
Team_15 75 97 53
20
Team_1 2A 50 30 55 30 35 55 30 40 55 35 30 0
Team_2 5A 60 30 35 60 45 50 30 30 30 35 0 55
Team_3 6A 50 60 50 50 45 55 45 50 35 0 55 55
Team_4 1A 30 30 40 30 30 30 50 35 0 40 35 60
Team_5 5A 30 50 35 55 30 30 40 0 50 45 40 50
Team_6 4A 0 35 30 40 55 55 0 35 60 60 60 50
Team_7 6A 45 0 35 30 35 0 60 55 30 30 60 60
Team_8 1A 45 60 0 40 0 45 35 30 60 30 60 60
Team_9 2A 30 35 30 0 35 30 30 55 45 45 30 60
Team_10 4A 40 50 0 60 0 55 35 35 40 60 60 60
Team_11 3A 35 0 45 30 35 0 45 35 35 30 45 45
Team_12 5A 0 45 45 45 50 45 0 35 40 45 55 40
Team_13 3A 60 0 50 30 55 50 50 0 30 35 35 55
Team_14 5A 40 55 0 40 35 30 30 50 0 35 50 45
Team_15 2A 40 30 50 0 30 50 60 30 55 0 50 30
Team_16 4A 60 55 55 60 0 50 50 30 30 35 0 55
Team_17 3A 30 55 50 55 50 0 40 40 55 55 50 0
Team_18 6A 40 60 30 50 35 45 0 30 40 55 0 60
Team_19 5A 35 30 50 45 55 40 40 0 45 0 40 45
Team_20 6A 40 30 40 40 50 45 35 55 0 55 30 60
Team_1 98 222 156
Team_2 134 208 140
Team_3 215 128 62
Team_4 180 67 132
Team_5 0 206 210
Team_6 148 141 75
Team_7 218 202 174
Team_8 73 205 231
Team_9 112 103 187
Team_10 193 226 131
Team_11 59 138 193
Team_12 94 176 205
Team_13 210 -12 75
Team_14 231 133 200
Team_15 237 183 121

~ Input data continues on next page ~

UIL – Computer Science Programming Packet – District - 2024

11

~ Hannah input continued ~
Team_16 -2 113 196
Team_17 144 99 133
Team_18 168 56 226
Team_19 64 73 57
Team_20 195 93 235

Sample output:
Classification 1A Results
Team_8 990
Team_4 719
Classification 2A Results
Team_1 904
Team_15 690
Classification 3A Results
Team_11 914
Team_13 607
Classification 4A Results
Team_10 989
Team_6 951
Classification 5A Results
Team_2 1074
Team_14 967
Team_5 938
Team_12 866
Classification 6A Results
Team_7 971
Team_3 952
Team_9 936
=========================
Classification 1A Results
Team_8 974
Team_4 789
Classification 2A Results
Team_15 966
Team_1 921
Team_9 827
Classification 3A Results
Team_17 856
Team_11 770
Team_13 723
Classification 4A Results
Team_10 1045
Team_6 844
Team_16 787
Classification 5A Results
Team_14 974
Team_2 942
Team_12 920
Team_5 871
Team_19 619
Classification 6A Results
Team_7 1034
Team_20 1003
Team_3 955
Team_18 895
=========================

UIL – Computer Science Programming Packet – District - 2024

12

9. Jennifer
 Program Name: Jennifer.java Input File: jennifer.dat

While studying infinite sums in her Calculus class, Jennifer was introduced to the well-known proof which shows that 0.999$ =
1. Being well-versed in the world of mathematical bases, Jennifer’s Calculus teacher showed them a similar proof to show what
this would be equivalent to in a base five numbering system.

The idea is that if you take a square with side length of 1, and break it down into 25 congruent squares, you can form four
identical sections, each with 5 of the congruent squares. This would mean that each of those sections comprise 1/5th of the area
of the whole square. Doing so would also leave you with 5 remaining squares. If you were to take 4 of the remaining 5 squares,
you would then have four new sections each comprising 1/25th of the area of the whole square. Then, take the last remaining
square, and perform the entire process again on that square infinitely.

1
25$ 1 25$ 1 25$ 1 25$ 1 25$

1
25$ 1 25$ 1 25$ 1 25$ 1 25$

1
25$ 1 25$ 1 25$ 1 25$ 1 25$

1
25$ 1 25$ 1 25$ 1 25$ 1 25$

1
25$ 1 25$ 1 25$ 1 25$ 1 25$

This means that 4(!

"
) + 4 (!

#"
) +⋯+ 4(!

"
)
$
= 1. In other words, for a base five numbering system, (0.444$)" = 1. However,

Jennifer was interested to see whether or not this property of infinite sums generalized to different bases. While investigating
this, Jennifer discovered a generalized formula which showed that for all |𝑥| ≥ 1, where 𝑥 is equivalent to the base, that…

(𝑥 − 1)23
1
𝑥4

$%

$&!

= 1

Discovering this generalized formula got Jennifer interested in the notion of non-integer bases. Specifically, given the inverse of
an arbitrary base, help Jennifer determine the most simplified number of sections that will be required at each stage in the
infinite sum process.

Input: The first line will be a single integer 𝑇 (1 ≤ 𝑇 ≤ 100) denoting the number of test cases to follow. The next 𝑇 lines will
consist of 2 space-seperated integers, 𝑛 and 𝑑 (1 ≤ 𝑛, 𝑑 ≤ 2'! − 1), denoting the numerator and the denominator of the inverse
of the current base. It is guaranteed that the value of ;𝑑 𝑛< ; > 1.

Output: For each of the 𝑇 test cases, output two space-separated integers, 𝑛(and 𝑑(, denoting the simplified numerator and
denominator of the number of sections that are required at each stage in the infinite sum process.

Sample input:
2
3 4
341 1054

Sample output:
1 3
23 11

UIL – Computer Science Programming Packet – District - 2024

13

10. Leah
 Program Name: Leah.java Input File: leah.dat

Leah is rather fond of expressing numbers in different bases. In particular, Leah has a real affinity for binary numbers. As such,
she already has a good understanding of what binary numbers are, and how to read them. In most cases, when generating binary
numbers, binary numbers are ordered from least to greatest. For example, the following is a list of the binary representation of
the numbers 0 through 7 which are expressed to 3 bits:

0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 2 3 4 5 6 7

Leah in her Digital Logic class was recently introduced to Gray Codes, which are an alternative way to order binary numbers.
Rather than simply adding one to the previous binary number to generate the next binary number, Gray Codes order binary
numbers according to the simple principle that no two adjacent numbers can differ by more than a single bit. The following is
the order of the first 8 Gray Codes expressed to 3 bits:

0b000, 0b001, 0b011, 0b010, 0b110, 0b111, 0b101, 0b100
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 3 2 6 7 5 4

However, generating Gray Codes can be decently difficult to do so by hand. Help Leah by writing her a program that generates
Gray Codes for different bit widths.

Input: The first line of input will consist of a single integer 𝑛 (1 ≤ 𝑛 ≤ 32) denoting the number of testcases to follow. The
next 𝑛 lines will each contain a single integer 𝑤) (1 ≤ 𝑤) ≤ 8) denoting the width of any given binary number that Leah wants
to generate.

Output: For each of Leah’s 𝑛 requests, on their own line, print a space-separated list of the decimal representation of the
numbers 0 through 2*! − 1 in their Gray Codes ordering.

Sample input:
4
3
1
4
2

Sample output:
0 1 3 2 6 7 5 4
0 1
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8
0 1 3 2

UIL – Computer Science Programming Packet – District - 2024

14

11. Lucas
 Program Name: Lucas.java Input File: lucas.dat

Lucas is a track coach keeping "track" of his runners' times in the "Uphill Mountain Running/Climbing Challenge" - the
UMRCC. It is important for him to be very aware of the progress of each member of the team.

Lucas will give you a list of times in seconds for each of his runners. Your job is to examine the list and send him back the
average time for each runner written in minutes and seconds.

If the seconds come out to be a decimal number, round down to the whole second. Or as he told us, "chop off the decimal."

Now Lucas realizes that everybody has a bad day and a super-great day from time-to-time. He would like you to drop the fastest
and the slowest time for each runner if they have at least three times listed. If a runner has only one or two recorded times, do
not drop any scores - because you can't. Each runner will have at least one time, guaranteed.

Input: Line #1 will consist of one integer N in the range [1,25] which indicates how many lines of data will follow. Each of the
N lines of data will contain a list of whole number times separated by one white space. On each line there will be T numbers
where T is in the range [1,20].

Output: Output the average time. Drop the fastest and slowest times if there are at least three times in the list. The time should
be written in the following format. Minutes:Seconds where minutes will be an integer in the range [0,167] and seconds will be a
two-digit number in the range [0,59]. There will be a colon in between the two numbers. There should be no whitespace in your
answers. If seconds calculate to be a decimal, truncate the value. For example, 34.97 seconds would truncate to 34 with no
decimal.

Sample input:
5
965 1200 1315 950
1408
2201 1534
1232 1236 1238 1240 1300 1303 1220 1251 1332 1299
1600 1200 1300 1400 1500

Sample output:
18:02
23:28
31:07
21:02
23:20

UIL – Computer Science Programming Packet – District - 2024

15

12. Veda
 Program Name: Veda.java Input File: veda.dat

Veda is a successful entrepreneur and has made a name for herself by owning a company which specializes in creating custom-
made signs. Like most custom-made sign businesses, Veda’s company, Ingenious Insignia™, prices her signs based off of the
amount of ink, dye, or vinyl that would be required to create said sign. As a result, she generates her prices on a per-letter basis,
where each letter occurring on the sign costs a certain amount. However, being the smart businesswoman that she is, Veda
knows that certain letters require more materials compared to others. As a result, Veda’s pricing is different depending on the
letter in question.

Wanting to be able to ensure that Veda maintains a competitive advantage over her competitors, she wants to figure out whether
or not a certain letter-to-price ordering would make her business favorable. Help Veda write a program that, given a list of
letter-to-price pairings, as well as different slogans for signs from potential future customers, returns the cost for each test sign.

Input: The first line of input will consist of a single integer 𝑛 (1 ≤ 𝑛 ≤ 26) denoting the number of unique letter-to-price
groups. The next 𝑛 lines will each consist of a comma-separated list of letters, followed by a colon, followed by a price 𝑝 (0 <
𝑝 ≤ 10). This denotes that each letter contained in the comma-separated list costs 𝑝 dollars per letter. Valid letters consist of
only the standard 26 capitalized English letters. All punctuation, spaces, and other special characters are considered free. It is
also guaranteed that each letter appears exactly once among the 𝑛 comma-separated lists.

The next line will consist of a single integer 𝑚 (1 ≤ 𝑚 ≤ 50) denoting the number of slogans that Veda wishes to calculate the
price for. The next 𝑚 lines will each consist of a single slogan, which will strictly consist of capitalized English letters,
whitespace, and special characters.

Output: For each slogan that Veda wishes to test, in the order that it appears in the input, on its own line, print out the cost 𝑃
that it would take to print said slogan using the letter-to-price groupings described in the input. This dollar amount should be
prepended with a dollar sign (‘$’) and should be expressed to two decimal values (rounded to the nearest cent).

Sample input: (indented lines are continuation of previous line):
6
B,C,D,F,G:0.023
H,J,K,L,M,N:0.102
P,Q,R,S,T:0.0098
V,W,X,Z:0.721
A,E,I,O,U:0.3400005
Y:1.23
5
UNIVERSITY INTERSCHOLASTIC LEAGUE
COMPUTER SCIENCE IS THE BEST SCIENCE
A RUBBER DUCK IS A PROGRAMMER’S BEST FRIEND!!!!
WOULD YOU RATHER HAVE UNLIMITED BACON, BUT NO GAMES, OR GAMES, UNLIMITED GAMES, BUT NO

GAMES?
ROAD WORK AHEAD... UH, YEAH, I SURE HOPE IT DOES

Sample output:
$7.03
$4.71
$4.78
$15.21
$8.38

UIL – Computer Science Judge’s Packet – District - 2024

 1

UIL Computer Science Competition

District 2024

JUDGES PACKET - CONFIDENTIAL

I. Instructions

1. The attached printouts of the judge test data are provided for the reference of the

contest director and programming judges. Additional copies may be made if
needed for this purpose.

2. This packet must remain CONFIDENTIAL. Additional copies may be made and

returned to schools when other confidential contest material is returned.

II. Table of Contents

Number Name
Problem 1 Ada
Problem 2 Ariel
Problem 3 Bodhi
Problem 4 Caroline
Problem 5 Christie
Problem 6 Claudius
Problem 7 Garold
Problem 8 Hannah
Problem 9 Jennifer

Problem 10 Leah
Problem 11 Lucas
Problem 12 Veda

	

UIL – Computer Science Judge’s Packet – District - 2024

 2

Problem #1
60 Points

1. Ada

 Program Name: Ada.java Input File: ada.dat

Test Input File: None

Test Output To Screen:
Ada Lovelace – World's First Computer Programmer!

	

UIL – Computer Science Judge’s Packet – District - 2024

 3

Problem #2
60 Points

2. Ariel

 Program Name: Ariel.java Input File: ariel.dat

Test Input File:
10
9:30 9:45 9:50 10:30 11:30 12:00
10:00 10:05 10:15 11:00 12:00 12:10
0:00 1:00 2:00 3:00 4:00
0:10 1:10 2:10 3:10 4:10
8:15 8:25 8:30 8:35 8:40 8:45 9:00
8:25 8:40 8:45 8:45 8:55 9:00 9:30
8:00 8:00 8:00 8:00 8:00 8:00 8:00 8:00
8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40
8:00 8:10 8:20 8:30 8:40 8:50
8:10 8:20 8:30 8:40 8:50 9:00
23:45 23:55
0:05 0:15
23:00 23:10 23:20 23:30 23:40 23:45 23:50 23:55
23:10 23:20 23:30 23:40 23:50 0:05 0:00 0:15
16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00
16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30 16:30
12:00
12:10
23:00 23:10 23:20 23:30 23:40 23:45 23:50 23:55 0:00
23:10 23:20 23:30 23:40 23:50 0:05 0:00 0:15 0:10

Test Output To Screen:
3
1
3
8
1
2
3
12
1
3

	

UIL – Computer Science Judge’s Packet – District - 2024

 4

Problem #3
60 Points

3. Bodhi

 Program Name: Bodhi.java Input File: bodhi.dat

Test Input File:
10
3500.00 5.25 12 15
100.00 7.95 4 40
9999.99 9.99 2 20
1000000.00 25.00 12 50
10000.00 5.89 366 1830
10000.00 5.89 12 60
10000.00 5.89 4 20
10000.00 5.89 2 10
10000.00 5.89 1 5
25000.00 4.99 12 120

Test Output To Screen:
$3736.86 $236.86
$219.72 $119.72
$26507.69 $16507.70
$2803768.37 $1803768.37
$13424.23 $3424.23
$13414.88 $3414.88
$13395.76 $3395.76
$13367.57 $3367.57
$13312.96 $3312.96
$41134.25 $16134.25

	

UIL – Computer Science Judge’s Packet – District - 2024

 5

Problem #4
60 Points

4. Caroline
 Program Name: Caroline.java Input File: caroline.dat

Test Input File:
10
12 13 14 15 23 24 25 26 55 62
7 7 7 7 7 7 7 7 28 28
2 3 2 3 2 3 2 3 2 3
5 1 2 8 6 7 5 3 0 9
11 22 33 44 55 66 77 88 99 110
4 5 4 5 4 5 4 5 4 0
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
10 9 8 7 6 5 4 3 2 1
2 3 4 5 6 7 8 9 10 11

Test Output To Screen:
Evens win by 7 point(s)
It's a tie!!!
Odds win by 5 point(s)
Odds win by 14 point(s)
Evens win by 55 point(s)
It's a tie!!!
Odds win by 70 point(s)
Evens win by 80 point(s)
Evens win by 5 point(s)
Odds win by 5 point(s)

	

UIL – Computer Science Judge’s Packet – District - 2024

 6

Problem #5
60 Points

5. Christie
 Program Name: Christie.java Input File: christie.dat

Test Input File:
10
10 20
30 50
100 200
50 55
41 42
1 100
200 299
23 29
1000 1100
9900 9999

Test Output To Screen:
10 20
30 34 40 43 50
100 122 148 184 200
50
NONE
1 2 3 4 5 6 7 8 9 10 20 30 34 40 43 50 60 68 70 80 86 90 100
200 212 221 236 244 263 269 296
NONE
1000 1022 1048 1084
9935 9953 9999

	

UIL – Computer Science Judge’s Packet – District - 2024

 7

Problem #6
60 Points

6. Claudius

 Program Name: Claudius.java Input File: claudius.dat

Test Input File:
11
6 7 15
S..MM.V
..MMMMV
...MMRV
VV.VVVV
A...QQE
MMM....
5 5 12
SMTTB
MMTTT
M..TT
VVVVV
ARR.E
5 5 15
SMTTT
MMTTT
M..TT
VVQQV
ARR.E
5 5 20
SMTTT
MMTTT
MMMTT
VVQQV
ARR.E
5 5 20
SMTTB
MMTTT
MMMTT
VVQQV
ARR.E
10 10 35
S..MMM.VV.
...MMMQVV.
TT.MMMQVVQ
TTTTRR.VVB
QQQQQA.VV.
VVV.VVVVVQ
VVV.VVVVVQ
TTTTT...MM
TTTT...MMM
BTT...MMME

~ Input continues ~
~ next column ~

~ Input continued ~
5 5 100
.....
....S
.....
A....
E....
3 3 10
SR.
V..
..E
3 3 100
SQ.
Q..
..E
10 10 35
S..MMM.VV.
...MMMQVV.
TT.MMMQVVQ
TTTTRR.VVB
QQQQQA.VV.
VVV.VVVVVQ
VVVQVVVVVQ
TTTTT...MM
TTTT...MMM
BTT...MMME
10 10 65
STTMMMTVVT
TTTMMMQVVT
TTTMMMQVVQ
TTTTRRTVVB
QQQQQATVVT
VVVTVVVVVQ
VVVQVVVVVQ
TTTTTTTTMM
TTTTTTTMMM
BTTTTTMMME

Test Output To Screen:
Free at last, Free at last. 3 hour(s) to spare.
Smokey the Bear is en route.
Free at last, Free at last. 0 hour(s) to spare.
Free at last, Free at last. 4 hour(s) to spare.
Smokey the Bear is en route.
Free at last, Free at last. 5 hour(s) to spare.
Smokey the Bear is en route.
Smokey the Bear is en route.
Smokey the Bear is en route.
Free at last, Free at last. 3 hour(s) to spare.
Free at last, Free at last. 25 hour(s) to spare.

 	

UIL – Computer Science Judge’s Packet – District - 2023

 8

Problem #7
60 Points

7. Garold

 Program Name: Garold.java Input File: garold.dat

Test Input File:
10
X.OOOOXO.
OX..X.XX.
OOXX..OOX
X.O..X.OO
XOO.O.OO.
X..OO.OXX
XXXOOO.OX
OO..X.XO.
O.XXOXOOX
X.OOOOXO.
O...X.XX.
OOXX..OOX
X.O..X.OO
.OO.O.OO.
X..OO.OXX
X.OOO..OX
OO..X.XO.
O.XXOXXXX
OOOOOOOOO
.........
XX.XX.XX.
XX.XX.XX.
..X..X..X
X.OX.OX.O
OOXOOXOOX
.OX.OX.OX
O..O..O..
OOOX.OX.O
...O.XO.X
XX.XXOXXO
XO.OXXO.X
X.OXO...X
X....O..X
XOXXOXOOX
OX.OX.OX.
OO.O..O.X
OXOX.OOOO
...O.XO.X
XX.XXOXXO
XO.OXXO.X
X.OXO...X
X....O..X
OXXXOXOOX

~ Input continues ~
~ next column ~

~ Input continued ~
OX.OX.OX.
OO.O..O.X
OXOX.OOOO
...O.XO.X
XX.XXOXXO
XO.OXXO.X
X.OXX...X
X....O..X
OXXXOXOOX
OX.OX.OX.
OO.O..O.X
.........
.........
.........
.........
.........
.........
.........
.........
.........
X.X..X.O.
..O.X...O
X..O.X..O
.O.O..O..
..X..O..O
X.X...X..
.O..X..O.
..X.X..O.
X..O..OX.
X.XO.X.O.
O.O.X.X.O
X.XO.XO.O
.O.OO.O.O
O.X.OOX.O
X.X.O.X.O
.OO.XO.OX
X.X.X.XO.
X.XOX.OX.
X.XOXX.OO
OXO.XOXXO
X.XO.XO.O
.OOOO.O.O
OXX.OOXXO
X.XXO.X.O
.OO.XO.OX
XXX.X.XOO
X.XOX.OX.

Test Output File:
Player X Won.
XOX
X.O
XOO
Cat's Game.
.OX
..O
O.X
Player O Won.
OOO
...
...
Player O Won.
O..
XOX
..O
Player O Won.
..O
XOX
O.O
Cat's Game.
..O
X.X
O.O
Cat's Game.
...
...
...
Cat's Game.
...
...
...
Cat's Game.
...
.OO
.X.
Cat's Game.
X.O
.OO
XX.

	

UIL – Computer Science Judge’s Packet – Invitational B - 2024

9

Problem #8
60 Points

8. Hannah

 Program Name: Hannah.java Input File: hannah.dat

Test Input File:
3
15
Team_1 2A 60 40 30 60 55 50 30 30 55 35 50 0
Team_2 5A 35 50 30 45 50 50 30 60 50 50 0 30
Team_3 6A 35 30 45 45 30 35 30 40 30 0 40 50
Team_4 1A 30 40 0 55 0 30 35 55 40 55 30 60
Team_5 5A 40 55 30 45 55 45 40 0 35 60 40 55
Team_6 4A 0 35 45 40 30 30 0 50 45 55 40 50
Team_7 6A 35 0 45 55 60 0 60 50 55 30 30 50
Team_8 1A 35 45 35 60 40 35 55 40 0 30 45 55
Team_9 6A 30 35 55 0 40 60 30 50 60 35 35 55
Team_10 4A 35 45 0 60 0 40 30 45 55 35 35 60
Team_11 3A 45 0 35 35 45 0 30 55 40 40 60 30
Team_12 5A 0 30 55 45 60 55 0 30 60 35 60 55
Team_13 3A 60 0 55 50 35 30 40 0 50 45 35 35
Team_14 5A 50 45 0 60 40 40 45 40 0 60 45 45
Team_15 2A 35 55 60 0 60 50 60 35 30 0 45 35
Team_1 184 155 70
Team_2 199 192 203
Team_3 136 177 229
Team_4 93 75 121
Team_5 0 210 228
Team_6 180 220 131
Team_7 174 92 235
Team_8 226 55 234
Team_9 92 196 163
Team_10 234 170 145
Team_11 136 178 185
Team_12 185 112 84
Team_13 68 -12 116
Team_14 230 121 146
Team_15 75 97 53
20
Team_1 2A 50 30 55 30 35 55 30 40 55 35 30 0
Team_2 5A 60 30 35 60 45 50 30 30 30 35 0 55
Team_3 6A 50 60 50 50 45 55 45 50 35 0 55 55
Team_4 1A 30 30 40 30 30 30 50 35 0 40 35 60
Team_5 5A 30 50 35 55 30 30 40 0 50 45 40 50
Team_6 4A 0 35 30 40 55 55 0 35 60 60 60 50
Team_7 6A 45 0 35 30 35 0 60 55 30 30 60 60
Team_8 1A 45 60 0 40 0 45 35 30 60 30 60 60
Team_9 2A 30 35 30 0 35 30 30 55 45 45 30 60
Team_10 4A 40 50 0 60 0 55 35 35 40 60 60 60
Team_11 3A 35 0 45 30 35 0 45 35 35 30 45 45
Team_12 5A 0 45 45 45 50 45 0 35 40 45 55 40
Team_13 3A 60 0 50 30 55 50 50 0 30 35 35 55
Team_14 5A 40 55 0 40 35 30 30 50 0 35 50 45
Team_15 2A 40 30 50 0 30 50 60 30 55 0 50 30
Team_16 4A 60 55 55 60 0 50 50 30 30 35 0 55
Team_17 3A 30 55 50 55 50 0 40 40 55 55 50 0
Team_18 6A 40 60 30 50 35 45 0 30 40 55 0 60
~ Hannah Input continues next page ~

UIL – Computer Science Judge’s Packet – Invitational B - 2024

10

~ Hannah Input continued ~
Team_19 5A 35 30 50 45 55 40 40 0 45 0 40 45
Team_20 6A 40 30 40 40 50 45 35 55 0 55 30 60
Team_1 98 222 156
Team_2 134 208 140
Team_3 215 128 62
Team_4 180 67 132
Team_5 0 206 210
Team_6 148 141 75
Team_7 218 202 174
Team_8 73 205 231
Team_9 112 103 187
Team_10 193 226 131
Team_11 59 138 193
Team_12 94 176 205
Team_13 210 -12 75
Team_14 231 133 200
Team_15 237 183 121
Team_16 -2 113 196
Team_17 144 99 133
Team_18 168 56 226
Team_19 64 73 57
Team_20 195 93 235
30
Team_1 1A 40 0 50 0 35 0 0 0 0 55 55 0
Team_2 3A 60 55 50 35 35 20 35 25 55 20 60 30
Team_3 2A 25 55 55 50 50 25 40 35 0 50 45 30
Team_4 4A 60 20 35 50 50 60 50 55 50 60 50 50
Team_5 6A 50 45 50 50 30 55 50 60 45 40 40 55
Team_6 1A 20 55 25 60 40 60 60 50 45 25 60 25
Team_7 5A 50 50 25 55 0 60 35 35 50 50 50 45
Team_8 3A 55 0 60 50 0 60 45 25 60 25 35 60
Team_9 6A 40 50 50 0 25 50 35 0 40 25 50 55
Team_10 1A 45 30 30 50 50 50 20 55 55 50 0 60
Team_11 2A 50 30 25 35 50 50 20 45 55 55 35 60
Team_12 4A 45 55 40 0 55 35 45 50 55 0 55 40
Team_13 4A 60 60 60 60 60 60 60 55 60 60 60 50
Team_14 2A 30 50 60 35 35 35 35 40 0 40 60 60
Team_15 5A 60 60 60 60 60 60 60 60 60 60 60 55
Team_16 3A 40 0 50 30 0 20 30 50 60 30 60 50
Team_17 5A 60 45 55 0 55 50 50 60 40 45 45 50
Team_18 2A 60 0 50 0 0 40 0 50 0 0 0 0
Team_19 4A 25 45 40 60 55 50 35 55 20 20 35 25
Team_20 3A 55 50 40 25 55 30 40 20 50 25 30 55
Team_21 6A 60 60 60 60 60 60 60 60 60 60 60 60
Team_22 5A 60 60 60 60 60 60 60 60 60 60 60 60
Team_23 5A 0 60 40 40 60 35 20 50 60 50 50 55
Team_24 6A 30 60 60 30 30 40 50 40 60 35 60 45
Team_25 1A 35 60 20 20 55 50 50 50 55 40 60 30
Team_26 4A 50 25 55 45 60 40 55 20 45 40 30 40
Team_27 3A 50 30 55 55 30 0 55 35 60 50 55 55
Team_28 6A 50 0 35 55 50 0 20 50 40 20 60 60
Team_29 1A 60 55 45 60 40 0 60 45 35 45 0 35
Team_30 2A 40 30 50 30 55 30 55 60 55 50 45 40
Team_1 20 60 112
Team_2 56 108 138
Team_3 36 118 -6
Team_4 186 116 8
Team_5 156 166 174
Team_6 80 166 60
Team_7 149 162 102
Team_8 118 -4 138
~ Hannah Input continues next page ~

UIL – Computer Science Judge’s Packet – Invitational B - 2024

11

~ Hannah Input continued ~
Team_9 150 160 174
Team_10 74 58 12
Team_11 168 4 66
Team_12 80 58 122
Team_13 34 26 140
Team_14 108 94 22
Team_15 124 168 192
Team_16 108 74 178
Team_17 94 52 48
Team_18 18 28 28
Team_19 66 58 -6
Team_20 148 74 56
Team_21 174 238 170
Team_22 84 182 204
Team_23 158 96 184
Team_24 198 226 192
Team_25 -2 -18 120
Team_26 66 90 92
Team_27 80 134 -16
Team_28 240 214 148
Team_29 92 6 64
Team_30 -14 82 60

Test Output To Screen:
Classification 1A Results
Team_8 990
Team_4 719
Classification 2A Results
Team_1 904
Team_15 690
Classification 3A Results
Team_11 914
Team_13 607
Classification 4A Results
Team_10 989
Team_6 951
Classification 5A Results
Team_2 1074
Team_14 967
Team_5 938
Team_12 866
Classification 6A Results
Team_7 971
Team_3 952
Team_9 936
=========================

~ Output continues next column ~

~ Output continued ~
Classification 1A Results
Team_8 974
Team_4 789
Classification 2A Results
Team_15 966
Team_1 921
Team_9 827
Classification 3A Results
Team_17 856
Team_11 770
Team_13 723
Classification 4A Results
Team_10 1045
Team_6 844
Team_16 787
Classification 5A Results
Team_14 974
Team_2 942
Team_12 920
Team_5 871
Team_19 619
Classification 6A Results
Team_7 1034
Team_20 1003
Team_3 955
Team_18 895
=========================

~ Output continues next column ~

~ Output continued ~
Classification 1A Results
Team_6 831
Team_29 642
Team_10 639
Team_25 625
Team_1 427
Classification 2A Results
Team_11 748
Team_14 704
Team_30 668
Team_3 608
Team_18 274
Classification 3A Results
Team_2 782
Team_16 780
Team_20 753
Team_27 728
Team_8 727
Classification 4A Results
Team_13 905
Team_4 900
Team_26 753
Team_12 735
Team_19 583
Classification 5A Results
Team_15 1199
Team_22 1190
Team_23 958
Team_7 918
Team_17 749
Classification 6A Results
Team_21 1302
Team_24 1156
Team_5 1066
Team_28 1042
Team_9 904
=========================

	

UIL – Computer Science Judge’s Packet – Invitational B - 2024

12

Problem #9
60 Points

9. Jennifer

 Program Name: Jennifer.java Input File: jennifer.dat

Test Input File:
100
6566832 121145770
83861962 442503106
954031266 1094811092
45293078 166717738
2041679849 2051287937
118972420 131203543
492026934 2018339073
403555292 428253450
1412489584 1613378470
139012142 1724168390
552240742 2110576592
281255322 951072450
859321883 957444255
274366090 620828416
586686040 1971371564
403964028 1891366538
287906686 489722942
1888329621 2041472043
1039142254 1159045233
1589584142 1639342802
102441350 161340376
45178196 1003705622
892968896 993227524
240228386 2019547860
1040730895 1520767030
124764482 192906424
535660106 994397938
853091572 1301584638
156996174 741312444
218627280 1173472908
952245152 1535727236
480278570 1986472482
198962396 952552345
~ Input continues next column ~

~ Continued from previous column ~
870984655 1778788730
80613417 343930959
231238458 1135011902
1315674738 1974795566
320324560 1600968358
933602314 1466438475
762175654 893973068
398621129 637745208
1039056990 1988629744
1277220863 1307845751
1064490506 1074152800
1020619605 1152752823
242432542 373337021
143839145 260670817
9815980 104188886
1239319164 1855656828
774603920 1843858954
813314259 984710313
91101705 383785520
860465117 1379072158
155668090 270424562
219265970 465134385
855118748 1696944514
166849739 203356696
1536947438 1941912037
296616854 591556110
129880080 184867876
438738386 1654317372
1718122772 1872524084
1067450633 1608430938
1421519118 1522747380
517195976 1038813464
67277122 1775369472
117942594 965052676
~ Input continues next column ~

~ Continued from previous column ~
1059488218 1809069450
56085700 154169082
181819842 767112261
1564085536 1903994738
42662540 1645582052
570530952 1445749704
347970801 703110078
907566567 1157757762
447972464 841885956
1395042915 1737711579
311949483 390783117
47810358 90921572
770089248 1567242801
614200688 809979282
786488504 1571970222
314369069 1125457360
934961646 1864537989
627823017 1428963549
805366830 1652537354
904687088 1225694790
230201662 1105113400
860579400 1490214882
172945670 346481712
1103254784 1229443878
6499731 140980112
9293788 1646566148
44008480 307651315
668075542 864876978
32296544 107777380
758915928 1385969262
1959356720 2036638134
1833754569 1862334444
1660586130 1916603296

~ Jennifer Output next page ~

UIL – Computer Science Judge’s Packet – Invitational B - 2024

13

~ Jennifer Output ~

Test Output To Screen:
57289469 3283416
179320572 41930981
70389913 477015633
60712330 22646539
9608088 2041679849
12231123 118972420
508770713 164008978
12349079 201777646
9131313 64204072
792578124 69506071
779167925 276120371
111636188 46875887
98122372 859321883
173231163 137183045
346171381 146671510
743701255 201982014
100908128 143953343
51047474 629443207
5213173 45180098
1081710 34556177
29449513 51220675
479263713 22589098
25064657 223242224
889659737 120114193
96007227 208146179
34070971 62382241
229368916 267830053
224246533 426545786
97386045 26166029
79570469 18218940
145870521 238061288
753096956 240139285
12772711 3372244
181560815 174196931
87772514 26871139
451886722 115619229
329560414 657837369
640321899 160162280
532836161 933602314
65898707 381087827
239124079 398621129
474786377 519528495
1801464 75130639
4831147 532245253
44044406 340206535
130904479 242432542
116831672 143839145
47186453 4907990
51361472 103276597
534627517 387301960
~ Output continues next column ~

~ Continued from previous column ~
19044006 90368251
58536763 18220341
518607041 860465117
57378236 77834045
49173683 43853194
420912883 427559374
36506957 166849739
31151123 118226726
147469628 148308427
13746949 32470020
607789493 219369193
38600328 429530693
6517835 12860851
411497 5778533
65202186 64649497
854046175 33638561
60507863 8424471
374790616 529744109
49041691 28042850
195097473 60606614
169954601 782042768
400729878 10665635
12155816 7924041
118379759 115990267
83397065 302522189
98478373 111993116
114222888 465014305
26277878 103983161
21555607 23905179
88572617 85565472
97889297 307100344
392740859 393244252
811088291 314369069
309858781 311653882
267046844 209274339
423585262 402683415
160503851 452343544
437455869 115100831
104939247 143429900
86768021 86472835
63094547 551627392
19211483 928533
409318090 2323447
52728567 8801696
98400718 334037771
18870209 8074136
104508889 126485988
38640707 979678360
9526625 611251523
128008583 830293065

UIL – Computer Science Judge’s Packet – District - 2024

14

14

Problem #10
60 Points

10. Leah

 Program Name: Leah.java Input File: leah.dat

Test Input File:
32
6
4
7
8
8
5
1
7
5
2
Continues next column

Continued from previous column
8
6
5
6
3
1
8
4
3
6
7
Continues next column

Continued from previous column
1
6
6
3
3
8
6
6
5
8
1

Test Output To Screen: (indented lines are continuation of previous line)
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199
197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215
214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248
232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166
167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181
183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153
152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199
197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215
214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248
232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166
167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181
183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153
152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16
0 1
~ Continues next page ~

UIL – Computer Science Judge’s Packet – District - 2024

~ Leah continued from previous page ~
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16
0 1 3 2
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199
197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215
214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248
232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166
167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181
183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153
152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4
0 1
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199
197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215
214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248
232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166
167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181
183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153
152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8
0 1 3 2 6 7 5 4
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64

0 1
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4
0 1 3 2 6 7 5 4
~ Continues next page ~

15

UIL – Computer Science Judge’s Packet – District - 2024

~ Leah continued from previous page ~
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199
197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215
214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248
232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166
167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181
183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153
152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48
49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16 48

49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34
35 33 32 96 97 99 98 102 103 101 100 108 109 111 110 106 107 105 104 120 121 123 122
126 127 125 124 116 117 119 118 114 115 113 112 80 81 83 82 86 87 85 84 92 93 95 94
90 91 89 88 72 73 75 74 78 79 77 76 68 69 71 70 66 67 65 64 192 193 195 194 198 199
197 196 204 205 207 206 202 203 201 200 216 217 219 218 222 223 221 220 212 213 215
214 210 211 209 208 240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248
232 233 235 234 238 239 237 236 228 229 231 230 226 227 225 224 160 161 163 162 166
167 165 164 172 173 175 174 170 171 169 168 184 185 187 186 190 191 189 188 180 181
183 182 178 179 177 176 144 145 147 146 150 151 149 148 156 157 159 158 154 155 153
152 136 137 139 138 142 143 141 140 132 133 135 134 130 131 129 128

0 1

	

16

UIL – Computer Science Judge’s Packet – District - 2024

Problem #11
60 Points

11. Lucas

 Program Name: Lucas.java Input File: lucas.dat

Test Input File:
10
965 1200 1315 950
1408
2201 1534
1232 1236 1238 1240 1300 1303 1220 1251 1332 1299
1600 1200 1300 1400 1500
1
6061
1199 1200
1234 1324 1423 1342 1432 1243
1500 1500 1500 1500 1500 2 2222

Test Output To Screen:
18:02
23:28
31:07
21:02
23:20
0:01
101:01
19:59
22:13
25:00

	

17

UIL – Computer Science Judge’s Packet – District - 2024

Problem #12
60 Points

12. Veda

 Program Name: Veda.java Input File: veda.dat

Test Input File (indented lines are continuation of previous line):
14
R,T,X:1.707920
A:0.053530
G:2.398230
P,Y:4.148970
H,J:6.799730
S:0.596120
F,O:6.100260
B,E,I:0.548650
D,V,L,N:0.654870
Q,C,M:9.904010
W:4.564600
U:8.875370
K:5.540460
Z:5.283880
43
UNIVERSITY INTERSCHOLASTIC LEAGUE
COMPUTER SCIENCE IS THE BEST SCIENCE
A RUBBER DUCK IS A PROGRAMMER'S BEST FRIEND!!!!
WOULD YOU RATHER HAVE UNLIMITED BACON, BUT NO GAMES, OR GAMES, UNLIMITED GAMES,

BUT NO GAMES?
ROAD WORK AHEAD... UH, YEAH, I SURE HOPE IT DOES
NEVER GONNA GIVE YOU UP, NEVER GONNA LET YOU DOWN
POLYPHIA IS A FANTASTIC GROUP TO LISTEN TO WHILE WORKING, PROGRAMMING, OR DOING

SOMETHING THAT REQUIRES FOCUS
MATRICULATION IS THE PROCESS OF GOING FROM YOUR BACHELOR'S TO YOUR MASTER'S

DEGREE
WHY DO ALL CONTRACTORS ALWAYS SAY THAT IT'LL TAKE TWO WEEKS TO FINISH A PROJECT?

IN REALITY, IT NEVER DOES.
DAD, I'M HUNGRY. HI HUNGRY, I'M DAD
EAMJFGPPNDISFPVFJJFGXOHRRRMSDVTPXLRDKSUIPXJGVNPF
EDMBIPDKNLFB
PFTOJODVALGFIMCDGKKEKU
OIFBLGQYNFQPHPNOSRGIFIPIFPXZJQFZSPMJFVAVVAUME
HCEOMTAIGZDOGDZJMRMCWJSOOXZXAKUYTHDOKFMIN
EPEXPGPSJZRHVJRDZVFDHRCUQI
ALTVHVWODAJJNRS
QWNCNOW
KEBOIZJVKZAQXQFNVHEMKYHGO
CNPDNXKKFOMWQGDHJYOVRARSCRHCVRMYDMUTDRIUOCAGTHYFFE
W
JVLZIFNCBVFUEQLXGHNYHGCCPUVDLLMPGACJBTTNNIBXYOSQDQ
IETLVJYKUWURVATVHQDAPIFIRPOLEMFUMZHXFGLJTHELEXWKD
XJZZUZSLRVWJBGDFCDEMZZ
DVABWKTSQQTPLLEFDYSJWKVFM
SGCRSVPVGQ
MQAEDUHSSPNYLFSWSBMFGJLWK
~ Input continues next page ~

18

UIL – Computer Science Judge’s Packet – District - 2024

~ Veda input continued ~
NARKAEUOMNRBGKMXWMW
KQEOGUGFXWIWEPNWQO
B
AQPHVTPHGWGF
JILYDIETM
LGDOYHNC
JFRSKLUYVE
TDEKYDRWFDXHCTTDEUSUJG
PFVMVODSEMVWTGTVWNEUXZFMWSPZHUII
BDDNGWXQDQQDZXZ
INWRTSRJHUKDDNPKQPQAKJFNELGQHXUVGHK
WDUYSOOPEKMHBWDVARHSOPUDWU
NEOVJDK
WTJNKBARWEPPBDTXRR
DEUGEYGBHXIYFDKVDSBSZYVFIAQZJDVQACZSYQHVXX
CBKBLPGLNVSFUMVCCEKOVAEPOYALOOJGJGDJCFXSLCHTKX

Test Output To Screen:
$75.10
$101.91
$92.56
$223.60
$101.80
$98.26
$280.55
$222.25
$203.38
$80.15
$159.96
$30.51
$90.93
$179.79
$186.05
$99.09
$38.46
$36.35
$108.07
$218.52
$4.56
~ Continues next column ~

~ Continued from previous column ~
$190.84
$176.87
$89.49
$86.91
$32.96
$95.91
$74.93
$79.17
$0.55
$49.68
$25.52
$31.32
$35.63
$76.86
$119.96
$54.48
$140.55
$106.78
$20.95
$43.02
$139.43
$182.87

19

