
UIL – Computer Science Programming Packet – Invitational B - 2023

Computer Science Competition

Invitational B 2023
Programming Problem Set

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. All problems have a value of 60 points.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless
specified by the problem, integer inputs will not have leading zeros. Unless otherwise
specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. A penalty of 5 points will be assessed each time that an incorrect solution is submitted.
This penalty will only be assessed if a solution is ultimately judged as correct.

II. Names of Problems

Number Name

Problem 1 Dilmini

Problem 2 Emily

Problem 3 Fiorella

Problem 4 Jacob

Problem 5 Karen

Problem 6 Lautaro

Problem 7 Mario

Problem 8 Petra

Problem 9 Rishita

Problem 10 Shivani

Problem 11 Tushar

Problem 12 Vinay

UIL – Computer Science Programming Packet – Invitational B - 2023

1. Dilmini

 Program Name: Dilmini.java Input File: None

Oh No! You broke your friend Dilmini’s phone, and he’s prone to outbursts when he gets upset! Quick, make him a new phone

before he notices.

Input: There is no input for this problem.

Output: Output the ascii image of the phone exactly as shown in the sample output, without the first and last lines of numbers

(These lines are only there to help you determine how many underscores are present, the .out file shows exactly what should be

output.)

Sample output:
123456789012345678901

__________$$$$$$$$$$

_________$_________$$

_________$_$$$$$$$_$$

_________$_$_____$_$$

_________$_$_____$_$$

_________$_$_____$_$$

_________$_$_____$_$$

_________$_$$$$$$$_$$

_________$_________$$

__________$$$$$$$$$$

_________$_________$$

________$_1__2__3_$$$

_______$_4__5__6_$$$

______$_7__8__9_$$$

_____$_*__0__#_$$$

____$_________$$$

_____$$$$$$$$$$$

______$$$$$$$$$

123456789012345678901

UIL – Computer Science Programming Packet – Invitational B - 2023

2. Emily

 Program Name: Emily.java Input File: emily.dat

Emily needs your help writing a program that reads in a simple mathematical expression consisting of an integer operand, a

binary operator, and another integer operand. The program should calculate the result of the mathematical operation and display

it to the console.

Valid binary operators are:

● + (performs addition)

● - (performs subtraction)

● X, x, and * (performs multiplication)

● / (performs division)

Input: Input will consist of an integer N, the number of test cases. The number of test cases will be in range [1,20]. Each

subsequent line will contain the mathematical expression of the form: “operand1 + operand2”, “operand1 - operand2”,

“operand1 X operand2”, “operand1 x operand2”, “operand1 * operand2”, or “operand1 / operand2”. operand1 and operand2 are

guaranteed to be integers in range of [-255,255]. There will be a guaranteed space between operand1 and the binary operator, as

well as a guaranteed space between the binary operator and operand2. Note: the input will never consist of division by 0 and the

remainder will be guaranteed to be a nonnegative number.

Output: For each mathematical expression, you are to output the original mathematical expression followed by a space, an

equal sign, a space, and the result of the operation. For the division case only, you are to output the result of the integer division,

followed by a space, “remainder”, space and the remainder of the division that was performed. See the Sample output.

Sample input:

7

1 + 2

5 - 1

4 * 3

8 x 6

9 X 4

20 / 6

40 / 10

Sample output:
1 + 2 = 3

5 - 1 = 4

4 * 3 = 12

8 x 6 = 48

9 X 4 = 36

20 / 6 = 3 remainder 2

40 / 10 = 4 remainder 0

UIL – Computer Science Programming Packet – Invitational B - 2023

3. Fiorella

 Program Name: Fiorella.java Input File: fiorella.dat

Your friend Fiorella has Algebra 2 homework due next period, and she forgot all about it! You need to write a program to do the

homework before the homework is due.

Use the following formula, given w, x, y, z, and G, solve for n:

wxny + z = G

Input: The first line will contain a single integer b (0 < b < 50) that indicates the number of data sets that follow. Each

data set will consist of 5 integers, w, x, y, z, and G, (0 < w, x, y, z, G < 2^31) all separated by spaces.

Output: Output the value of n given by solving the equation for n given all the other values. This value should be formatted as

an integer, and printed as shown in the sample output. There will never be a set of numbers for which there is no valid n.

Sample input:
4

2 2 2 2 8

2 2 2 2 514

3 2 3 16 52

6 7 8 10 2362

Sample output:
0

7

2

2

UIL – Computer Science Programming Packet – Invitational B - 2023

4. Jacob

 Program Name: Jacob.java Input File: jacob.dat

Jacob is fascinated with Math and recently learned that the Math constant π or pi is an irrational number that is approximately

3.14159265… and it can be computed to desired precision using the following math series:

π ≈ 3 +
4

2 × 3 × 4
−

4

4 × 5 × 6
+

4

6 × 7 × 8
−

4

8 × 9 × 10
+⋯

Jacob is better with Math than Java programming and has asked for your help computing approximations of π using a variety of

number of terms after the initial value of 3. The above expression would be the approximation using 4 terms and produces the

first value shown below in the sample output.

Input: First line will contain a positive integer N, the number of test cases with 0 ≤ N ≤ 25. The following N lines will contain a

single positive integer T, the desired number of terms following the initial value of 3 to include in the approximation with 0 ≤ T

≤ 1000.

Output: For each test case, display the computed approximation of π with 13 digits after the decimal point.

Sample input:
5

4

7

23

101

911

Sample output:
3.1396825396825

3.1420718170718

3.1416106990405

3.1415928891421

3.1415926539194

UIL – Computer Science Programming Packet – Invitational B - 2023

5. Karen

 Program Name: Karen.java Input File: karen.dat

Karen has always been fascinated by perfect squares. They have so many interesting characteristics. She realized that since

perfect squares alternate between even and odd numbers, any integer will have exactly one integer perfect square that is closest

to it. That is, an integer is never halfway between two integer perfect squares.

Your job is to take any integer in the range [1,1000000] and determine the closest integer perfect square to that number.

Input: Input will consist of an integer N, the number of test cases. The number of test cases will be in range [1,20]. Each

subsequent line will contain one integer in the range [1,1000000]

Output: Each line of output will consist one number representing the closest integer perfect square to the input.

Sample input:
5

90

91

144

500000

1111

Sample output:
81

100

144

499849

1089

UIL – Computer Science Programming Packet – Invitational B - 2023

6. Lautaro

 Program Name: Lautaro.java Input File: lautaro.dat

You and your friend Lautaro have secured a job at a telemarketing company. Your job is to go through a list of submitted phone

numbers, and determine which ones are valid, valid phone number requirements are defined below:

Valid Phone Number Requirements:

1) The phone number must be made up of 10 digits, in the following example format:

 (123) 456-7890

2) There must be a three-digit area code beginning the phone number, and it must be inside a set of parentheses, with

nothing inside the parentheses except for the area code.

3) After the area code, there must be a space before there are any more numbers.

4) After the space, we will have 3 digits, followed by a dash, followed by 4 digits.

5) Any number not following this format exactly is invalid.

Input: The first line will contain a single integer n (0 < n < 50) that indicates the number of data sets that follow. Each

data set will consist of a string denoting the phone number to be validated, all on one line.

Output: For each data set, if the phone number is valid, output the string "Valid Phone Number.". If the phone number

is invalid, output the string "No Calls for You.".

Sample input:
4

(833) 691-2590

(323)-432-3222

(34) 345-2341

(233) 888 7876

Sample output:
Valid Phone Number.

No Calls for You.

No Calls for You.

No Calls for You.

UIL – Computer Science Programming Packet – Invitational B - 2023

7. Mario

 Program Name: Mario.java Input File: mario.dat

Mario is trying to create a new way to write words in code so he can leave secret messages to his friends. He has come up with

an interesting way to encode a word.

A word will be accompanied by an integer. That integer indicates how many letters at the front and at the back of a word that

will be swapped. For example, if the integer is 2 and the word is COMPUTER, the first two letters of COMPUTER "CO" will be

placed at the end of the word and the last two letters "ER" will move to the front.

But, to make it just a bit trickier, Mario will reverse the letters in each of the two blocks that are being swapped. Thus, in the

example above "OC" moves to the end and "RE" moves to the start.

2 COMPUTER gives us REMPUTOC

3 COMPUTER gives us RETPUMOC

Mario noticed that there would be two special cases.

If the integer is larger than the number of letters in the word, the output is "error".

7 MOUSE gives us error

If the integer does not trigger an error as mentioned above, but is more than half the length of the word, the result would be

simply the reversal of the original word.

4 TEXAS gives us SAXET

Write the program to allow Mario to encode his words.

Input: Input will consist of an integer N, the number of test cases. The number of test cases will be in range [1,20]. Each

subsequent line will contain one integer in the range [1,100] followed by one space then a string consisting only of upper-case

letters. The strings will contain no spaces and no punctuation marks. The string will be of length [1,100].

Output: Each line of output will consist of one string of characters representing the "rearranged" solution. If the inputs create an

error code mentioned above, the output will be "error" written in all lower-case letters.

Sample input:
5

3 ABCDEFG

4 AB

1 ABCDEFG

5 QWERTY

2 ASDFGH

Sample output:
GFEDCBA

error

GBCDEFA

YTREWQ

HGDFSA

UIL – Computer Science Programming Packet – Invitational B - 2023

8. Petra

 Program Name: Petra.java Input File: petra.dat

Petra likes to look at things from all angles. When it comes to numbers, she likes to look at the relationship between a number

and its reverse.

The reverse of 135 is 531.

The reverse of 980 is 089 which is actually 89.

The reverse of 5 is 5.

Your job is to find the greatest common factor of an input number and its reverse.

Input: Input will consist of an integer N, the number of test cases. The number of test cases will be in range [1,20]. Each

subsequent line will contain one integer in the range [1,1000000] representing the number to be tested.

Output: Each line of output will consist of one integer representing the greatest common factor of the input with its reverse.

Sample input:
5

21

44

700

369

12345

Sample output:
3

44

7

9

3

UIL – Computer Science Programming Packet – Invitational B - 2023

9. Rishita

 Program Name: Rishita.java Input File: rishita.dat

Rishita’s classmate Sunny solved a programming problem from the Invitational A contest about dual-credit courses. She found

the resulting list of courses from Sunny’s contest problem very useful and has accepted a challenge to expand the list by

including more data and a different sort. Rishita is as excited as Sunny about taking UIL programming and developing her

skills! The previous data from the Texas Common Course Numbering System (TCCNS) included only course codes and titles

but now contains the names of the schools that offer the courses. Courses may be offered by more than one school.

Can you help Rishita implement a multi-level sort?

Input: An unknown number of lines, greater than 1 and less than 100. Each line contains a course title followed by a course

code and the name of the school offering the course. Items are separated by commas and there are no other punctuation or

special characters except for the dash in the course codes.

Output: A sorted list, first by school as the major sort then by course number as the minor sort, both alphabetical (A…Z). List

will be formatted as shown in the sample output with the school listed once and the list of courses indented by 3 spaces

containing the course code first followed by the course title, separated by 3 spaces.

Sample input:
UNIVERSITY PHYSICS I LAB,PHYS-2125,TEXAS REPUBLIC COLLEGE

ELEMENTARY STATISTICAL METHODS,MATH-1342,TEXAS REPUBLIC COLLEGE

COMPUTER ORGANIZATION,COSC-2325,BEXAR COMMUNITY COLLEGE

PROGRAMMING FUNDAMENTALS I,COSC-1336,TEXAS REPUBLIC COLLEGE

UNIVERSITY PHYSICS I,PHYS-2325,TEXAS REPUBLIC COLLEGE

INTRODUCTION TO COMPUTER PROGRAMMING,COSC-1315,BEXAR COMMUNITY COLLEGE

C PROGRAMMING,COSC-1320,TEXAS VIRTUAL COLLEGE

CALCULUS I,MATH-2313,TEXAS VIRTUAL COLLEGE

PROGRAMMING FUNDAMENTALS II,COSC-1337,TEXAS REPUBLIC COLLEGE

INTRODUCTION TO COMPUTER PROGRAMMING,COSC-1315,TEXAS REPUBLIC COLLEGE

PROGRAMMING FUNDAMENTALS I,COSC-1336,TEXAS VIRTUAL COLLEGE

PROGRAMMING FUNDAMENTALS III,COSC-2336,TEXAS VIRTUAL COLLEGE

Sample output:
BEXAR COMMUNITY COLLEGE

 COSC-1315 INTRODUCTION TO COMPUTER PROGRAMMING

 COSC-2325 COMPUTER ORGANIZATION

TEXAS REPUBLIC COLLEGE

 COSC-1315 INTRODUCTION TO COMPUTER PROGRAMMING

 COSC-1336 PROGRAMMING FUNDAMENTALS I

 COSC-1337 PROGRAMMING FUNDAMENTALS II

 MATH-1342 ELEMENTARY STATISTICAL METHODS

 PHYS-2125 UNIVERSITY PHYSICS I LAB

 PHYS-2325 UNIVERSITY PHYSICS I

TEXAS VIRTUAL COLLEGE

 COSC-1320 C PROGRAMMING

 COSC-1336 PROGRAMMING FUNDAMENTALS I

 COSC-2336 PROGRAMMING FUNDAMENTALS III

 MATH-2313 CALCULUS I

UIL – Computer Science Programming Packet – Invitational B - 2023

10. Shivani

 Program Name: Shivani.java Input File: shivani.dat

You and Shivani are doing a project for your ancient architecture class, and you need to go buy materials. Your project will be a

triangular pyramid made of spheres. The top of the pyramid will be one sphere, and the layer below it will be 3 spheres. The nth

layer in the pyramid will have n more spheres than the one above it, so 3 + 3 = 6, 6 spheres in the 3rd layer, and so on. You will

be given n, the number of layers, and you need to determine how many spheres you will need for the pyramid project.

Input: The first line will contain a single integer m that indicates the number of data sets that follow. Each of the following m

lines will contain an integer n, the number of layers in your triangular pyramid.

Note: The values for n may be quite large, n may be greater than 2^64 (meaning it is too big for an int or long).

Output: Output the number of spheres needed to form the triangular pyramid with n layers, as shown in the sample output.

Sample input:
4

6

12

25

53

Sample output:
56

364

2925

26235

UIL – Computer Science Programming Packet – Invitational B - 2023

11. Tushar

 Program Name: Tushar.java Input File: tushar.dat

Tushar really enjoys working with 2-D arrays and is always looking for new ways to work with the array data. Traditional uses

typically involve horizontal and vertical processing but Tushar is trying a diagonal pattern and is having some difficulty.

Starting at the top left corner, which is indexed as row 0 and column 0, work down and right to compute the average of the

elements along a diagonal. Then, work across the top to generate an average for each down and right diagonal. Continue by

working down the left side and generate an average, again moving down and right along each diagonal.

Col →
↓ Row 0 1 2 3 4 5

0 1 6 11 15 18 20

1 21 2 7 12 16 19

2 25 22 3 8 13 17

3 28 26 23 4 9 14

4 30 29 27 24 5 10

In the above example with 5 rows and 6 columns, the first shaded diagonal contains 1…5, the second diagonal 6…10, the third

shaded diagonal 11…14, the fourth diagonal 15…17, the fifth shaded diagonal 18…19, and finishing across the top with just 20.

Working down the left side would be 21…24, then shaded 25…27, then 28…29, and finally just the shaded 30. This produces

10 diagonals with averages shown in sample output below.

Input: First line contains a single integer N the number of test cases that follow with N ≤ 10. Each test case starts with a line

containing 2 integers separated by whitespace: R, the number of rows, and C, the number of columns, with both 2 ≤ R, C ≤ 12.

That line will be followed by R lines of data with each containing C integers separated by whitespace containing integers in [-

100,100].

Output: For each test case, output 1 row of averages, separated by single spaces. Display the averages with 2 digits after the

decimal point.

Sample input:
3

5 6

1 6 11 15 18 20

21 2 7 12 16 19

25 22 3 8 13 17

28 26 23 4 9 14

30 29 27 24 5 10

4 4

-13 -9 -5 -1

-14 -10 -6 -2

-15 -11 -7 -3

-16 -12 -8 -4

3 2

1 -6

-2 5

3 -4

Sample output:
3.00 8.00 12.50 16.00 18.50 20.00 22.50 26.00 28.50 30.00

-8.50 -6.00 -3.50 -1.00 -11.00 -13.50 -16.00

3.00 -6.00 -3.00 3.00

UIL – Computer Science Programming Packet – Invitational B - 2023

12. Vinay

 Program Name: Vinay.java Input File: vinay.dat

Vinay is obsessed with palindromes. A palindrome is a word or phrase that reads the same backward as forward. For example:

racecar is a palindrome since “racecar” spelled in reverse is “racecar”. Vinay knows verifying palindromes is a straightforward

process, but Vinay wants to up the ante, and try to determine if the letters or numeric characters in any word or phrase can be

rearranged such that it forms a palindrome. If the word or phrase can be rearranged to form a palindrome, Vinay wants to know

how many distinct palindromes can be formed. For example, looking at the word racecar, the word can be rearranged such that

six palindromes are formed:

1. acrerca

2. arcecra

3. carerac

4. craearc

5. racecar

6. rcaeacr

Vinay needs your help writing a program that will not only determine if any given phrase, with all non-alphabetic and all non-

numeric characters removed, can be used to form a palindrome, and if so, how many distinct palindrome(s) can be formed.

Think you can help?

Input: Input will consist of an integer N, the number of test cases. N will be in range [1,30]. The following N lines will contain

a word, or phrase, of which you are to determine how many distinct palindromes can be formed from the word or phrase when

all non-alphabetic and all non-numeric characters are removed. Each test case will be guaranteed to be of length [1, 30]

characters.

Output: For each input case, you are to output the original word or phrase followed by: “can not be rearranged to

form a palindrome.” if it is not possible to form a palindrome from the input, or “can be rearranged to form

X distinct palindrome(s).” where X is the calculated number of distinct palindromes that can be formed from the

input when all non-alphabetic and non-numeric characters are removed.

Sample input:
12

racecar

carrace

a

kayak

12123455436

rotator

wow

noon

saippuakivikauppias

uil

racecars

Mr. Owl ate my metal worm

Sample output:
racecar can be rearranged to form 6 distinct palindrome(s).

carrace can be rearranged to form 6 distinct palindrome(s).

a can be rearranged to form 1 distinct palindrome(s).

kayak can be rearranged to form 2 distinct palindrome(s).

12123455436 can be rearranged to form 120 distinct palindrome(s).

rotator can be rearranged to form 6 distinct palindrome(s).

wow can be rearranged to form 1 distinct palindrome(s).

noon can be rearranged to form 2 distinct palindrome(s).

saippuakivikauppias can be rearranged to form 45360 distinct palindrome(s).

uil can not be rearranged to form a palindrome.

racecars can not be rearranged to form a palindrome.

Mr. Owl ate my metal worm can be rearranged to form 181440 distinct palindrome(s).

UIL – Computer Science Judge’s Packet – Invitational B - 2023

1

UIL Computer Science Competition

Invitational B 2023

JUDGES PACKET - CONFIDENTIAL

I. Instructions

1. The attached printouts of the judge test data are provided for the reference of the

contest director and programming judges. Additional copies may be made if
needed for this purpose.

2. This packet must remain CONFIDENTIAL. Additional copies may be made and

returned to schools when other confidential contest material is returned.

II. Table of Contents

Number Name

Problem 1 Dilmini

Problem 2 Emily

Problem 3 Fiorella

Problem 4 Jacob

Problem 5 Karen

Problem 6 Lautaro

Problem 7 Mario

Problem 8 Petra

Problem 9 Rishita

Problem 10 Shivani

Problem 11 Tushar

Problem 12 Vinay

UIL – Computer Science Judge’s Packet – Invitational B - 2023

2

Problem #1
60 Points

1. Dilmini

 Program Name: Dilmini.java Input File: NONE

Test Input File: NONE

Test Output To Screen:
__________$$$$$$$$$$

_________$_________$$

_________$_$$$$$$$_$$

_________$_$_____$_$$

_________$_$_____$_$$

_________$_$_____$_$$

_________$_$_____$_$$

_________$_$$$$$$$_$$

_________$_________$$

__________$$$$$$$$$$

_________$_________$$

________$_1__2__3_$$$

_______$_4__5__6_$$$

______$_7__8__9_$$$

_____$_*__0__#_$$$

____$_________$$$

_____$$$$$$$$$$$

______$$$$$$$$$

UIL – Computer Science Judge’s Packet – Invitational B - 2023

3

Problem #2
60 Points

2. Emily

 Program Name: Emily.java Input File: emily.dat

Test Input File:
20

1 + 2

5 - 1

4 * 3

8 x 6

9 X 4

20 / 6

40 / 10

2 + 1

1 - 5

3 * 4

6 x 8

4 X 9

6 / 20

10 / 40

-5 + 23

-255 + 0

255 + 6

-4 x -5

-30 / 5

36 / -12

Test Output To Screen:
1 + 2 = 3

5 - 1 = 4

4 * 3 = 12

8 x 6 = 48

9 X 4 = 36

20 / 6 = 3 remainder 2

40 / 10 = 4 remainder 0

2 + 1 = 3

1 - 5 = -4

3 * 4 = 12

6 x 8 = 48

4 X 9 = 36

6 / 20 = 0 remainder 6

10 / 40 = 0 remainder 10

-5 + 23 = 18

-255 + 0 = -255

255 + 6 = 261

-4 x -5 = 20

-30 / 5 = -6 remainder 0

36 / -12 = -3 remainder 0

UIL – Computer Science Judge’s Packet – Invitational B - 2023

4

Problem #3
60 Points

3. Fiorella

 Program Name: Fiorella.java Input File: fiorella.dat

Test Input File:
10

2 2 2 2 8

2 2 2 2 514

3 2 3 16 52

6 7 8 10 2362

2 2 2 2 8192

3 2 3 1 64

1 212 1 1 2

4 2 4 2 258

3 3 3 3 12

3 3 3 3 59052

Test Output To Screen:
0

7

2

2

10

2

0

4

0

8

UIL – Computer Science Judge’s Packet – Invitational B - 2023

5

Problem #4
60 Points

4. Jacob

 Program Name: Jacob.java Input File: jacob.dat

Test Input File:
25

4

7

23

101

911

0

1

2

3

1000

277

317

433

503

653

500

757

839

997

11

100

200

300

700

900

Test Output To Screen:
3.1396825396825

3.1420718170718

3.1416106990405

3.1415928891421

3.1415926539194

3.0000000000000

3.1666666666667

3.1333333333333

3.1452380952381

3.1415926533405

3.1415926652257

3.1415926613640

3.1415926566480

3.1415926555425

3.1415926544835

3.1415926516018

3.1415926541638

3.1415926540116

3.1415926538413

3.1417360992607

3.1415924109720

3.1415926228048

3.1415926444226

3.1415926528640

3.1415926532480

UIL – Computer Science Judge’s Packet – Invitational B - 2023

6

Problem #5
60 Points

5. Karen

 Program Name: Karen.java Input File: karen.dat

Test Input File:

10

90

91

144

500000

1111

1

1000000

77777

200

40001

Test Output to Screen:
81

100

144

499849

1089

1

1000000

77841

196

40000

UIL – Computer Science Judge’s Packet – Invitational B - 2023

7

Problem #6
60 Points

6. Lautaro

 Program Name: Lautaro.java Input File: lautaro.dat

Test Input File:
15

(833) 691-2590

(323)-432-3222

(34) 345-2341

(233) 888 7876

888 888-8888

888-888-8888

(333) 333-3333

(432) 33-2345

(8900) 456-4567

(899) 1234-1234

(432) 123-123

(452) 321-12345

(321) 3214-12345

(900) 32-345

Your Teacher is My Teacher.

Test Output To Screen:
Valid Phone Number.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

Valid Phone Number.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

No Calls for You.

UIL – Computer Science Judge’s Packet – Invitational B - 2023

8

Problem #7
60 Points

7. Mario

 Program Name: Mario.java Input File: mario.dat

Test Input File:

10

3 ABCDEFG

4 AB

1 ABCDEFG

5 QWERTY

2 ASDFGH

10 TELEVISION

8 BIFOCAL

2 PRESIDENT

1 CEILING

3 PAJAMAS

Test Output to Screen:
GFEDCBA

error

GBCDEFA

YTREWQ

HGDFSA

NOISIVELET

error

TNESIDERP

GEILINC

SAMAJAP

UIL – Computer Science Judge’s Packet – Invitational B - 2023

9

Problem #8
60 Points

8. Petra

 Program Name: Petra.java Input File: petra.dat

Test Input File:

10

21

44

700

369

12345

45678

301

88

1

999998

Test Output to Screen:
3

44

7

9

3

6

1

88

1

1

UIL – Computer Science Judge’s Packet – Invitational B - 2023

10

Problem #9
60 Points

9. Rishita

 Program Name: Rishita.java Input File: rishita.dat

Test Input File:
UNIVERSITY PHYSICS I LAB,PHYS-2125,TEXAS REPUBLIC COLLEGE

ELEMENTARY STATISTICAL METHODS,MATH-1342,TEXAS REPUBLIC COLLEGE

COMPUTER ORGANIZATION,COSC-2325,BEXAR COMMUNITY COLLEGE

PROGRAMMING FUNDAMENTALS I,COSC-1336,TEXAS REPUBLIC COLLEGE

UNIVERSITY PHYSICS I,PHYS-2325,TEXAS REPUBLIC COLLEGE

INTRODUCTION TO COMPUTER PROGRAMMING,COSC-1315,BEXAR COMMUNITY COLLEGE

C PROGRAMMING,COSC-1320,TEXAS VIRTUAL COLLEGE

CALCULUS I,MATH-2313,TEXAS VIRTUAL COLLEGE

PROGRAMMING FUNDAMENTALS II,COSC-1337,TEXAS REPUBLIC COLLEGE

INTRODUCTION TO COMPUTER PROGRAMMING,COSC-1315,TEXAS REPUBLIC COLLEGE

PROGRAMMING FUNDAMENTALS I,COSC-1336,TEXAS VIRTUAL COLLEGE

PROGRAMMING FUNDAMENTALS III,COSC-2336,TEXAS VIRTUAL COLLEGE

CALCULUS II,MATH-2314,TEXAS REPUBLIC COLLEGE

COLLEGE ALGEBRA,MATH-1314,WATER HOLE COLLEGE

ELEMENTARY PHYSICS,PHYS-1310,VETERAN COLLEGE OF TEXAS

COLLEGE PHYSICS I LAB,PHYS-1101,TEXAS REPUBLIC COLLEGE

PHYSICAL SCIENCE II LAB,PHYS-1117,TEXAS VIRTUAL COLLEGE

CALCULUS III,MATH-2315,TEXAS REPUBLIC COLLEGE

ELEMENTARY PHYSICS I,PHYS-1305,TEXAS REPUBLIC COLLEGE

SOLAR SYSTEM,PHYS-1304,TEXAS REPUBLIC COLLEGE

ELEMENTARY PHYSICS II LAB,PHYS-1107,TEXAS REPUBLIC COLLEGE

PHYSICAL SCIENCE I,PHYS-1315,WATER HOLE COLLEGE

PRE-CALCULUS MATH,MATH-2312,WATER HOLE COLLEGE

MATHEMATICS FOR TEACHERS II,MATH-1351,VETERAN COLLEGE OF TEXAS

UNIVERSITY PHYSICS II,PHYS-2326,BEXAR COMMUNITY COLLEGE

COLLEGE PHYSICS I,PHYS-1301,BEXAR COMMUNITY COLLEGE

ELEMENTARY PHYSICS I LAB,PHYS-1105,TEXAS REPUBLIC COLLEGE

PHYSICAL SCIENCE I LAB,PHYS-1115,TEXAS VIRTUAL COLLEGE

COLLEGE PHYSICS II LAB,PHYS-1102,VETERAN COLLEGE OF TEXAS

CALCULUS II,MATH-2314,BEXAR COMMUNITY COLLEGE

PHYSICAL SCIENCE II,PHYS-1317,TEXAS VIRTUAL COLLEGE

UNIVERSITY PHYSICS II LAB,PHYS-2126,WATER HOLE COLLEGE

LINEAR ALGEBRA,MATH-2318,VETERAN COLLEGE OF TEXAS

MATHEMATICS FOR TEACHERS I,MATH-1350,WATER HOLE COLLEGE

ELEMENTARY PHYSICS II LAB,PHYS-1307,TEXAS VIRTUAL COLLEGE

DISCRETE MATHEMATICS,MATH-2305,BEXAR COMMUNITY COLLEGE

COLLEGE PHYSICS II,PHYS-1302,WATER HOLE COLLEGE

PLANE TRIGONOMETRY,MATH-1316,TEXAS VIRTUAL COLLEGE

SOLAR SYSTEM LAB,PHYS-1104,VETERAN COLLEGE OF TEXAS

MATHEMATICS FOR TEACHERS II,MATH-1351,WATER HOLE COLLEGE

MATHEMATICS FOR TEACHERS I,MATH-1350,VETERAN COLLEGE OF TEXAS

PROGRAMMING FUNDAMENTALS II,COSC-1337,VETERAN COLLEGE OF TEXAS

PROGRAMMING FUNDAMENTALS III,COSC-2336,VETERAN COLLEGE OF TEXAS

INTRODUCTION TO COMPUTING,COSC-1301,TEXAS VIRTUAL COLLEGE

DIFFERENTIAL EQUATIONS,MATH-2320,BEXAR COMMUNITY COLLEGE

~ Output continues on next page ~

UIL – Computer Science Judge’s Packet – Invitational B - 2023

11

~ Rishita, continued ~

Test Output To Screen:
BEXAR COMMUNITY COLLEGE

 COSC-1315 INTRODUCTION TO COMPUTER PROGRAMMING

 COSC-2325 COMPUTER ORGANIZATION

 MATH-2305 DISCRETE MATHEMATICS

 MATH-2314 CALCULUS II

 MATH-2320 DIFFERENTIAL EQUATIONS

 PHYS-1301 COLLEGE PHYSICS I

 PHYS-2326 UNIVERSITY PHYSICS II

TEXAS REPUBLIC COLLEGE

 COSC-1315 INTRODUCTION TO COMPUTER PROGRAMMING

 COSC-1336 PROGRAMMING FUNDAMENTALS I

 COSC-1337 PROGRAMMING FUNDAMENTALS II

 MATH-1342 ELEMENTARY STATISTICAL METHODS

 MATH-2314 CALCULUS II

 MATH-2315 CALCULUS III

 PHYS-1101 COLLEGE PHYSICS I LAB

 PHYS-1105 ELEMENTARY PHYSICS I LAB

 PHYS-1107 ELEMENTARY PHYSICS II LAB

 PHYS-1304 SOLAR SYSTEM

 PHYS-1305 ELEMENTARY PHYSICS I

 PHYS-2125 UNIVERSITY PHYSICS I LAB

 PHYS-2325 UNIVERSITY PHYSICS I

TEXAS VIRTUAL COLLEGE

 COSC-1301 INTRODUCTION TO COMPUTING

 COSC-1320 C PROGRAMMING

 COSC-1336 PROGRAMMING FUNDAMENTALS I

 COSC-2336 PROGRAMMING FUNDAMENTALS III

 MATH-1316 PLANE TRIGONOMETRY

 MATH-2313 CALCULUS I

 PHYS-1115 PHYSICAL SCIENCE I LAB

 PHYS-1117 PHYSICAL SCIENCE II LAB

 PHYS-1307 ELEMENTARY PHYSICS II LAB

 PHYS-1317 PHYSICAL SCIENCE II

VETERAN COLLEGE OF TEXAS

 COSC-1337 PROGRAMMING FUNDAMENTALS II

 COSC-2336 PROGRAMMING FUNDAMENTALS III

 MATH-1350 MATHEMATICS FOR TEACHERS I

 MATH-1351 MATHEMATICS FOR TEACHERS II

 MATH-2318 LINEAR ALGEBRA

 PHYS-1102 COLLEGE PHYSICS II LAB

 PHYS-1104 SOLAR SYSTEM LAB

 PHYS-1310 ELEMENTARY PHYSICS

WATER HOLE COLLEGE

 MATH-1314 COLLEGE ALGEBRA

 MATH-1350 MATHEMATICS FOR TEACHERS I

 MATH-1351 MATHEMATICS FOR TEACHERS II

 MATH-2312 PRE-CALCULUS MATH

 PHYS-1302 COLLEGE PHYSICS II

 PHYS-1315 PHYSICAL SCIENCE I

 PHYS-2126 UNIVERSITY PHYSICS II LAB

UIL – Computer Science Judge’s Packet – Invitational B - 2023

12

Problem #10
60 Points

10. Shivani

 Program Name: Shivani.java Input File: shivani.dat

Test Input File: (indented lines are continuations of previous line)
15

6

12

25

53

123456789

234567890

345678901

1234567890

1

2

3

123456709876541234567898765433456787654

123454321234

23456765433456787654567898765357688656786564354678765435798786756438798675643567

5867867564367586798675643

0

Test Output To Screen: (indented lines are continuations of previous line)
56

364

2925

26235

313612736252315226397035

2151069482844141070560180

6884420214044052050454651

313612729393604748070560180

1

4

10

31361212564869838162897824989007853944482564769724998698958502184004747247548854

6518835042618878109765064006208120

313593922690148606789819349221940

21510629719367077180381412838447504129055477465154348414470503843699834116793393

93073408662014134232796841823781116592365160250546474807015053226834973306979

68818205640361578456408363933756514398435086087952706795503990018873029954628

90411110658982845826298377770431013757152406770544464629785608017694602988023

90

0

UIL – Computer Science Judge’s Packet – Invitational B - 2023

13

Problem #11
60 Points

11. Tushar

 Program Name: Tushar.java Input File: tushar.dat

Test Input File: (rows of data indented and right-aligned here for readability, actual data single tab delimited)
7

5 6

1 6 11 15 18 20

21 2 7 12 16 19

25 22 3 8 13 17

28 26 23 4 9 14

30 29 27 24 5 10

4 4

-13 -9 -5 -1

-14 -10 -6 -2

-15 -11 -7 -3

-16 -12 -8 -4

3 2

1 -6

-2 5

3 -4

2 2

-33 4

-83 2

12 12

-85 -2 100 -23 39 -96 -98 35 -3 -18 -85 -95

-79 22 46 -80 5 31 20 -71 64 32 -35 -38

-3 87 65 -90 -12 30 -50 -74 91 14 -38 100

24 33 -13 -2 7 53 30 -26 44 55 70 90

-27 69 -4 20 -76 -48 0 36 -24 -54 -78 33

9 91 51 21 21 -51 29 -69 3 84 -37 -18

41 94 89 80 -92 -2 -88 17 -12 72 23 -83

-19 -39 -54 -16 71 -95 25 29 5 -40 51 41

95 -66 40 79 -100 -15 76 -56 -34 -83 37 36

-67 -36 -58 -70 95 36 -12 29 -88 -95 -16 -59

61 -18 6 18 21 58 -67 -49 -35 53 -36 -33

85 59 40 47 -55 -22 31 19 96 83 62 -27

3 12

-51 -49 94 21 -3 96 -22 31 37 60 -82 -28

-52 86 -26 -2 81 -10 -29 43 -99 -10 -92 26

46 23 77 -42 59 59 22 47 92 88 -69 7

~ Input & Output continues on next page ~

UIL – Computer Science Judge’s Packet – Invitational B - 2023

14

~ Tushar, continued ~

12 3

-3 1 55

-28 26 -23

4 -92 89

-56 16 -43

61 -17 -24

-49 37 82

77 -40 -60

63 -91 -58

-78 -73 88

-17 -69 -58

-22 -59 76

-2 41 -77

Test Output To Screen: (indented lines are continuation of previous line)
3.00 8.00 12.50 16.00 18.50 20.00 22.50 26.00 28.50 30.00

-8.50 -6.00 -3.50 -1.00 -11.00 -13.50 -16.00

3.00 -6.00 -3.00 3.00

-15.50 4.00 -83.00

-31.50 -15.27 -8.20 26.67 14.75 -40.00 -19.83 43.20 20.25 15.67 -61.50 -95.00

2.73 1.30 35.00 3.13 44.57 -4.83 -36.00 28.00 -15.00 60.00 85.00

37.33 -39.00 50.33 53.67 3.00 38.00 37.67 6.67 -14.00 -8.33 -28.00 -28.00 -14.50

46.00

37.33 -11.00 55.00 -54.33 -1.33 3.00 12.67 -49.00 24.67 -22.67 -23.67 -51.00

9.50 -2.00

UIL – Computer Science Judge’s Packet – Invitational B - 2023

15

Problem #12
60 Points

12. Vinay

 Program Name: Vinay.java Input File: vinay.dat

Test Input File:
29

deified

Do geese see God?

Was it a car or a cat I saw?

Rats live on no evil star

Live on time, emit no evil

Step on no pets

Don't nod.

Evil olive.

Amore, Roma.

Yo, banana boy!

Dammit, I'm mad!

Borrow or rob?

I did, did I?

Draw, O coward!

Wonton? Not now!

Never odd or even.

Step on no pets.

Live not on evil.

Rise to vote, sir!

Stella won no wallets.

Won't lovers revolt now?

Delia saw I was ailed.

Too bad I hid a boot.

Red rum, sir, is murder.

Nate bit a Tibetan.

Ah. Satan sees Natasha.

Nat bit a Tibetan.

Step on no pe.

112233445566778899aabbccdde

~ Vinay Output on next page ~

UIL – Computer Science Judge’s Packet – Invitational B - 2023

16

~ Vinay Output ~

Test Output To Screen: (lines that are indented are continuation of previous line)
deified can be rearranged to form 6 distinct palindrome(s).

Do geese see God? can be rearranged to form 360 distinct palindrome(s).

Was it a car or a cat I saw? can be rearranged to form 60480 distinct

palindrome(s).

Rats live on no evil star can be rearranged to form 3628800 distinct

palindrome(s).

Live on time, emit no evil can be rearranged to form 907200 distinct

palindrome(s).

Step on no pets can be rearranged to form 720 distinct palindrome(s).

Don't nod. can be rearranged to form 6 distinct palindrome(s).

Evil olive. can be rearranged to form 24 distinct palindrome(s).

Amore, Roma. can be rearranged to form 24 distinct palindrome(s).

Yo, banana boy! can be rearranged to form 120 distinct palindrome(s).

Dammit, I'm mad! can be rearranged to form 60 distinct palindrome(s).

Borrow or rob? can be rearranged to form 30 distinct palindrome(s).

I did, did I? can be rearranged to form 6 distinct palindrome(s).

Draw, O coward! can be rearranged to form 120 distinct palindrome(s).

Wonton? Not now! can be rearranged to form 180 distinct palindrome(s).

Never odd or even. can be rearranged to form 2520 distinct palindrome(s).

Step on no pets. can be rearranged to form 720 distinct palindrome(s).

Live not on evil. can be rearranged to form 720 distinct palindrome(s).

Rise to vote, sir! can be rearranged to form 720 distinct palindrome(s).

Stella won no wallets. can be rearranged to form 181440 distinct palindrome(s).

Won't lovers revolt now? can be rearranged to form 181440 distinct

palindrome(s).

Delia saw I was ailed. can be rearranged to form 20160 distinct palindrome(s).

Too bad I hid a boot. can be rearranged to form 2520 distinct palindrome(s).

Red rum, sir, is murder. can be rearranged to form 20160 distinct palindrome(s).

Nate bit a Tibetan. can be rearranged to form 2520 distinct palindrome(s).

Ah. Satan sees Natasha. can be rearranged to form 30240 distinct palindrome(s).

Nat bit a Tibetan. can not be rearranged to form a palindrome.

Step on no pe. can not be rearranged to form a palindrome.

112233445566778899aabbccdde can be rearranged to form 6227020800 distinct

palindrome(s).

