The University Interscholastic League Number Sense Test • HS B • 2021

	rumber ben				
			Final		
	Contestant's Number		2nd		
			1st		
	· · · · · · · · · · · · · · · · · · ·	UNFOLD THIS SHEET IL TOLD TO BEGIN		Score	Initial
	Directions: Do not turn this page until the person conducting to 80 problems. Solve accurately and quickly as many as you can SOLVED MENTALLY. Make no calculations with paper a each problem. Problems marked with a (*) require approximative percent of the exact answer will be scored correct; all others.	in the order in which they appear. ALL nd pencil. Write only the answer in the nate integral answers; any answer to a str problems require exact answers.	PROBLEM e space prov	IS ARE 'rided at the	TO BE e end of
	The person conducting this contest should explain these d STOP -	WAIT FOR SIGNAL!			
(1)	41720 — 18420 =	(18) $53^2 \div 4$ has a remainder	of		
	417 + 1820 =	(19) 18% of $277\frac{7}{9} = $			
(3)	3.5 × 1.1 = (decimal)	*(20) 417 × 2041 ÷ 820 =			
(4)	$\frac{3}{16} = $ % (decimal)	(21) $3\frac{1}{5}$ is the square root of _		(d	lecimal
(5)	$\frac{3}{4} + \frac{7}{8} =$ (improper fraction)	$(22) \ (14+15\times 16-17) \div 6$	has a rem	nainder o	of
(6)	$4\frac{1}{7} + 4\frac{1}{8} =$ (mixed number)	(23) 74 ₈ =			
(7)	4.18 — 17.4 = (decimal)	(24) The arithmetic mean of 3	32, 37, and	48 is _	
(8)	MDCCXVIII = (Arabic Numeral)	$(25) \ 555 \times \frac{3}{37} = \underline{\hspace{1cm}}$			
(9)	The GCD of 56 and 84 is	(26) Let $97 = p + q$, where $p = q$	= q + 17. l	Find q. $_{-}$	
	4182 + 4170 + 1817 + 2020 =	(27) 265 base 10 equals kAx b	ase 12. Fi	nd k + x	.•
(11)	17 × 71 =	(28) 50 is what percent greate	er than 403	?	%
	The mode of {1, 1, 2, 3, 5, 2, 1, 3, 4, 7} is	(29) Find the value of k so that $8x + ky = 2$ is -4 . $k = $			
	DCCXIV — CDXVIII = (Arabic Numeral)	*(30) $(59 \div 3 \times 24 \div 4)^2 = $			
(15)	17 is what percent of 85?%	(31) 0.11222 =	(proper f	raction
(16)	41718 ÷ 6 has a remainder of	(32) If $(12)(63) = 21k$, then k			
(17)	$8\frac{3}{5} \times 5\frac{1}{4} =$ (mixed number)	$(33) \ 7\frac{3}{5} \times 7\frac{2}{5} = \underline{\hspace{1cm}}$		(mixed n	umber

- (34) $6^6 \div 7$ has a remainder of ______
- (35) Given: 3, 9, 12, 21, 33, m, 87, n, ... m + n =

(36)
$$\frac{4^3}{(2^3)(5^2)} =$$
_____(decimal)

- (37) The number of positive integral divisors of 84 greater than 4 is _____
- (38) If $4\sqrt{3} + \sqrt{75} = \sqrt{k}$, then k =_____
- (39) Find the smallest integer k, where k > 3, such that 7k + 4 is a perfect square.
- *(40) $3\frac{1}{17} \times 47820 \div 13 =$ _____
- $(41) \ 352 \times 358 =$
- (42) If $9 \times 3^3 \div 27^2 = 3^k$, then k =_____
- (43) Let x + y = 16 and x y = 21. Find $x^2 y^2$.
- $(44) 630_8 415_8 + 72_8 =$ _______8
- (45) The cube root of 39,304 is _____
- (46) If $\sqrt{a^5} \times \sqrt[3]{a^2} = \sqrt[n]{a^k}$, then k =
- (47) The product of the roots of $(5x-2)^3 = 0$ is _____
- $(48) (105)^3 = \underline{\hspace{1cm}}$
- (49) Given: 3, 4, 6, 8, 12, k, 18, k = _____
- *(50) $\sqrt{325} \times \sqrt{253} \times \sqrt{532} =$
- (51) The sides of a right triangle are integers. If one leg is 13, then the hypotenuse is _____
- $(52) \ \frac{1+4+9+16+...+49}{1+3+6+10+...+28} = \underline{\hspace{2cm}}$
- (53) Let $f(x) = 2x + \log_3(x)$. Find f(9).
- (54) The first 4 digits of the decimal of $\frac{5}{66}$ is 0.____
- (55) (4+7i)(3-5i) = a + bi. $a + b = ______$
- (56) 0.125 mile = ______ yards
- (57) The number of positive proper fractions in lowest terms with a denominator of 26 is _____

- $(58) 417 \times 131 =$
- (59) How many days are there from the end of 02/07/21 to the beginning of 03/14/21? _____ days
- $*(60) (41)^4 = 38 \times$
- (61) Find the sum of all negative integers x such that $2x + 8 \ge 1$.
- $(62) (185)^2 = \underline{\hspace{1cm}}$
- (63) $\sin(105^{\circ})\cos(105^{\circ}) =$ _____
- (64) 39 × 111 = _____
- (65) Round ($\sqrt{6} + \sqrt{7}$) to the nearest tenth.
- (66) $21 \times \frac{22}{25} =$ _____ (mixed number)
- (67) The sum of the reciprocals of all of the positive divisors of 30 is ______
- (68) How many different 6-letter code words can be constructed using the letters ELEVEN?
- *(70) 1,380 miles per hour = _____ feet per second
- (71) Change .36, base 7, to a base 10 fraction. _____
- (72) 30° Celsius = ______ $^{\circ}$ Fahrenheit
- (73) Let f'(x) = 6x and f(-1) = 3. Find f(-3).
- (74) If f(x) = 2x 3 then $f^{-1}[f(4)] = ______$
- (75) If $f(x) = 4 + \frac{3-2x}{5}$, then $f^{-1}(1) =$
- (76) The minimum value of $y = 3x^2 2$ is ______
- (77) 1718 × 101 = _____
- (78) $\int_{1}^{3} x^{2} dx =$ _____
- (79) The sum of the product of the roots taken two at a time of $2x^4 13x^3 + 28x^2 23x + 6 = 0$ is _____
- *(80) The length of the altitude of an equilateral triangle with a perimeter of 510 cm is _____ cm

DO NOT DISTRIBUTE TO STUDENTS BEFORE OR DURING THE CONTEST

University Interscholastic League - Number Sense Answer Key HS ● Invitation B ● 2021

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 23,300

(18) 1

(34) 1

(58) 54,627

(2) 2,237

(19) 50

(35) 195

(59) 34

(3) 3.85

*(20) 987 — 1,089

(36) .32

*(60) 70,645 — 78,080

(4) 18.75

(21) 10.24

(37) 8

(61) - 6

 $(5) \frac{13}{8}$

(22) 3

(38) 243

(62) 34,225

(6) $8\frac{15}{56}$

(23) 60

(39) 11

 $(63) - .25, -\frac{1}{4}$

(7) - 13.22

(24) 39

*(40) 10,690 — 11,814

(64) 4,329

(8) 1,718

(25) 45

(41) 126,016

(65) 5.1, $\frac{51}{10}$, $5\frac{1}{10}$

(9) 28

(26) 40

(42) - 1

 $(66) 18\frac{12}{25}$

*(10) 11,580 — 12,798

(27) 2

(43) 336

(28) 25

(44) 305

(67) 2.4, $\frac{12}{5}$, $2\frac{2}{5}$

(11) 1,207

(29) 2

(45) 34

(68) 120

(12) 1

(46) 19

 $(69) \frac{1}{3}$

(13) 529

 $(31) \frac{101}{900}$

*(30) 13,228 — 14,620

(47) .064, $\frac{8}{125}$,

*(70) 1,923 — 2,125

(14) 296

(32) 36

(48) 1,157,625

 $(71) \frac{27}{49}$

(15) 20

(49) 14

(72) 86

(16) 0

 $(33) 56\frac{6}{25}$

*(50) 6,284 — 6,944

(73) 27

(51) 85

(74) 4

 $(52) \frac{5}{3}, 1\frac{2}{3}$

(75) 9

(53) 20

(76) - 2

(54) 0757

(77) 173,518

(55) 48

 $(78) \frac{26}{3}, 8\frac{2}{3}$

(56) 220

(79) 14

(57) 12

*(80) 140 — 154

 $(17) 45\frac{3}{20}$