Science State • 2024

GENERAL DIRECTIONS:

- DO NOT OPEN EXAM UNTIL TOLD TO DO SO.
- Contestants may take up to two hours to complete the contest. If you are in the process of actually writing an answer when the signal to stop is given, you may finish writing that answer.
- Papers may not be turned in until 30 minutes have elapsed. If you finish the test in less than 30 minutes, remain at your seat and retain your paper until told to do otherwise. You may use this time to check your answers.
- All answers must be written on the answer sheet provided. Indicate your answers in the appropriate blanks provided on the answer sheet. Write clearly and legibly!
- You may place as many notations as you desire anywhere on the test paper but not on the answer sheet, which is reserved for answers only.
- You may use additional scratch paper provided by the contest director.
- All questions have ONE and only ONE correct (BEST) answer. There is a penalty for all incorrect answers.
- If a question is omitted, no points are given or subtracted.
- The back two pages of this test include a copy of the periodic table of the elements, as well as listings of other scientific relationships. You may use this information during the contest and may detach the back page from the test if you wish.
- A simple scientific calculator is sufficient for the high school Science contest. The UIL provides a list of approved calculators that meet the criteria for use in the Science contest. No other calculators are permitted during the contest. The Science Contest Approved Calculator List is available in the current Science Contest Handbook and on the UIL website. Contest directors will perform a brief visual inspection to confirm that all contestants are using only approved calculators. Each contestant may use up to two approved calculators during the contest.

B01. Two molecules moving in the same direction across a membrane through a transport protein against their concentration gradients would be termed \qquad and an example of \qquad transport.
A) antiport: active
B) symport: active
C) antiport: passive
D) symport: passive
E) antiport: osmosis
F) symport: osmosis

B02. Which of the following is not one of the four characteristics that all chordates have at some point in their life?
A) notochord
B) pharyngeal slits or clefts
C) muscular, post-anal tail
D) dorsal, hollow nerve cord
E) vertebrae

B03. A bacterial cell is infected with a bacteriophage. The bacteriophage injects its nucleic acid into the host cell. The injected nucleic acid enters the nucleoid region and integrates into the host DNA as a prophage. The prophage is replicated along and in sync with the cell's own replication processes and the prophage is passed down to each daughter cell. Which viral replicative cycle is described above?
A) Mitosis
B) Lytic
C) Lysogeny
D) Binary fission
E) Budding

B05. Which member of Enterobacteriaceae causes opportunistic urinary tract infections and produces an enzyme, called urease, that alkalinizes urine and can ultimately cause kidney and bladder stone formation due to pH changes?
A) Escherichia coli
B) Shigella dysenteriae
C) Salmonella enterica Typhi
D) Klebsiella pneumoniae
E) Proteus vulgaris

B06. Proteins that hold sister chromatids together at the centromeres until the right moment of separation during Meiosis II are specifically called
A) histones.
B) shugoshin.
C) cohesins.
D) adhesions.
E) chiasmas.

B07. Reproductive barriers are an important factor in the evolution of species. What happens when closely related species have incomplete reproductive barriers and can therefore mate and produce offspring in the areas where their ranges overlap?
A) A stable, hybrid zone can form.
B) Reproductive barriers can be strengthened when hybrids are less fit than their parent species.
C) Reproductive barriers can be weakened as gene flow occurs among the species.
D) All of the above can occur.
E) None of the above occurs.

B08. In the nitrogen biogeochemical cycle, the main reservoir of nitrogen, which contains 80% of free dinitrogen gas, is
A) the atmosphere.
B) soil.
C) water of oceans, lakes, rivers, and streams.
D) sediments.
E) biomass of living organisms.

B09. Examine the image. In which location would this cell produce pyruvate during aerobic respiration?

A) 2
B) 3
C) 9
D) 11
E) 13

B10. Translation of the mRNA for genes whose products are designed to be used in the extracellular environment would occur using ribosomes \qquad of eukaryotic cells.
A) free-floating in the cytosol
B) present within the Golgi complex
C) embedded within the rough endoplasmic reticula
D) located within the mitochondrial matrix
E) found within the nucleolus

B11. According to the Centers for Disease Control and Prevention, which viral infection is currently being monitored across the United States, with the most cases being reported in Illinois, as of late March 2024?
A) mumps
B) rabies
C) smallpox
D) COVID-19
E) measles

B12. If red (R) is incompletely dominant over white (r), and tall (T) is completely dominant over short (t), what percent of the progeny will be both pink and short from the following genetic cross?
$\operatorname{RrTt} x \operatorname{RrTt}$
A) 0%
B) 6.25%
C) 10%
D) 12.5%
E) 24%
F) 50%

B13. Supergroup Opisthokonta includes all of the following except
A) amoebas.
B) choanoflagellates.
C) fungi.
D) animals.
E) nucleariids.

B14. The enzymes that catalyze the reactions of the Calvin-Benson cycle in plants are located within the
A) plant cell's cytoplasm.
B) chloroplast's stroma.
C) thylakoid membranes.
D) grana.
E) thylakoid lumen/spaces.

B15. Assuming Hardy-Weinberg equilibrium, a population has 792 individuals that exhibit the dominant phenotype out of a total population of 926. What is the frequency of heterozygotes in the population?
A) 0.145
B) 0.380
C) 0.471
D) 0.620
E) 0.855

B16. Acetylcholine is released into the neuromuscular junction from motor neuron synapses to promote muscle contraction. Which of the following occurs immediately after the release of this neurotransmitter to promote muscle contraction?
A) Acetylcholine diffuses across the synaptic cleft and binds to ligand-gated ion channels on the muscle fiber.
B) Acetylcholinesterase degrades the acetylcholine in the synaptic cleft.
C) An action potential travels down the motor neuron and activates voltage-gated ion channels.
D) Voltage-gated calcium channels open in response to an action potential and release calcium.
E) An end plate potential is achieved, and muscle contraction occurs.

B17. A third copy of human chromosome 21 in a fertilized egg results in
A) Klinefelter syndrome.
B) Jacob syndrome.
C) Down syndrome.
D) deletion of human chromosome 1 .
E) color blindness.

B18. The ABO gene locus encodes glycosyltransferases that produce type A and type B antigens on erythrocytes, which confer blood type. The H gene, also called FUT1 for fucosyl transferase, synthesizes the sugars (type H antigens) to which the type A or type B antigens are attached. The Bombay blood type ($h h$) results in type O but is still incompatible with non-Bombay type O blood as those who are genotype $h h$ produce anti-H antibodies. Based upon this information, what percent of the progeny from the following cross would be considered type O ?
$I^{\mathrm{A}} \mathrm{I}^{\mathrm{B}} \mathrm{Hh} \times \mathrm{I}^{\mathrm{B}}{ }^{\mathrm{i}} \mathrm{Hh}$
A) 0%
B) 25%
C) 50%
D) 75%
E) 100%

B19. Examine the image. Where would transitional epithelium primarily be found?

A) 1
B) 2
C) 3
D) 4
E) 5

B20. In the evolution of land plants, which structure evolved before the others in the list below?
A) pollen
B) flowers
C) roots
D) seeds
E) vascular tissue

C01. A standard latex party balloon is filled with a 50/50 mole to mole mixture of helium and
 argon to a volume of 14.5 L at $25^{\circ} \mathrm{C}$ and 1 atm pressure. If the uninflated balloon weighs 36.2 grams, what is the overall density of the inflated balloon?
A) $0.85 \mathrm{~g} / \mathrm{L}$
B) $1.18 \mathrm{~g} / \mathrm{L}$
C) $3.22 \mathrm{~g} / \mathrm{L}$
D) $2.96 \mathrm{~g} / \mathrm{L}$
E) $3.60 \mathrm{~g} / \mathrm{L}$

C02. If you mix 7.70×10^{24} molecules of SF_{4} with 770 grams of fluorine gas to produce SF_{6} gas and the reaction goes to completion, what would the volume of the container be at $25^{\circ} \mathrm{C}$ and 1 atm pressure when the reaction is complete?
A) 496 L
B) 316 L
C) 1232 L
D) 1000 L
E) 770 L

C03. Which of these isotopes has the fewest neutrons?
A) $\mathrm{C}-14$
D) F-19
B) $\mathrm{N}-14$
E) $\mathrm{Ne}-20$
C) $\mathrm{O}-18$

C04. A gas sample has a volume of 10.0 L at 1.0 atm pressure and $25.6^{\circ} \mathrm{C}$. The volume of the container is expanded to 25.0 L and heated to $74.4^{\circ} \mathrm{C}$, and then 50.0 grams of a mystery gas is added to the container. The new pressure is found to be 2.5 atm . Which of these gases could be the mystery gas?
A) CO_{2}
B) F_{2}
C) Ar
D) N_{2}
E) O_{2}

C05. According to molecular orbital theory, what is the bond order in a boron monoxide molecule?
A) $1 / 2$
B) 1
C) $3 / 2$
D) 2
E) $21 / 2$

C06. Which of these compounds would you expect to have the largest lattice energy?
A) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
B) $\mathrm{Cr}(\mathrm{OH})_{3}$
C) MgCl_{2}
D) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsO}_{4}$
E) $\mathrm{Ag}_{2} \mathrm{~S}$

C07. What is the change in internal energy for the reaction shown here at 1 atm pressure?

A) 1832 J
D) -1832 J
B) 1888 J
E) -1888 J
C) 1933 J
F) - 1933 J

C08. How many grams of barium chloride would you need to make up 1500 mL of solution with an osmotic pressure of 3.33 atm at $15^{\circ} \mathrm{C}$?
A) 44.0 g
B) 104 g
C) 32.0 g
D) 28.9 g
E) 98.2 g

C09. For this equilibrium reaction

$$
\mathrm{A}_{2}+2 \mathrm{~B}_{2} \rightleftharpoons 2 \mathrm{AB}_{2}(\mathrm{~g}) \Delta H_{\mathrm{rxn}}=-30.4 \mathrm{~kJ}
$$

If the equilibrium constant is 3095 at $25^{\circ} \mathrm{C}$, at what temperature will the equilibrium constant be equal to 500 ?
A) $55^{\circ} \mathrm{C}$
B) $66^{\circ} \mathrm{C}$
C) $77^{\circ} \mathrm{C}$
D) $88^{\circ} \mathrm{C}$
E) $99^{\circ} \mathrm{C}$

C10. 5.00 grams of the salt of a monoprotic weak acid HA is dissolved in water to make 250 mL of solution and the pH of the solution is 9.67 . If the salt has a molar mass of 144.11, what is the K_{a} of HA?
A) 6.34×10^{-7}
B) 1.58×10^{-8}
C) 4.68×10^{-5}
D) 2.14×10^{-10}
E) 3.31×10^{-9}

C 11 . If you had a 0.010 M solution of NiCl_{2} and you started adding NaOH to the solution, at what pH would $\mathrm{Ni}(\mathrm{OH})_{2}$ start to precipitate out? Assume no volume change as the NaOH is added.
A) 6.95
B) 7.00
C) 7.15
D) 7.22
E) 7.31

C12. What is the total charge on each side of the balanced net ionic equation for the redox reaction between the hypochlorite ion and the hydroxide ion? The products of the overall reaction are the chloride ion and oxygen gas.
A) 0
B) -1
C) -2
D) -4
E) -6

C 13 . When a certain reaction is heated from $20.0^{\circ} \mathrm{C}$ to $35.7^{\circ} \mathrm{C}$, the reaction rate doubles. What is the activation energy for the reaction?
A) 328 J
B) 49.5 kJ
C) 13.6 kJ
D) 29.9 kJ
E) 33.2 kJ

C14. How many grams of copper are in a 500 gram sample of copper(II) sulfate pentahydrate?
A) 101 g
B) 127 g
C) 145 g
D) 182 g
E) 199 g

C15. If a photon of ultraviolet light strikes a potassium surface in a vacuum and ejects an electron with a velocity of $8.28 \times 10^{5} \mathrm{~m} / \mathrm{s}$, what is the wavelength of the ultraviolet photon? The work function for potassium is 2.3 eV .
A) 292 nm
B) 188 nm
C) 202 nm
D) 227 g
E) 345 g

C16. Five vanadium species are listed in the box below. Among these five species, the vanadium atom has the same oxidation state in two of them. What is that oxidation state?

$\mathrm{V}(\mathrm{CO})_{6}$	$\mathrm{VO}_{4}{ }^{3-}$	VO_{2}
$\mathrm{VO}\left(\mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{+}$	$\mathrm{VO}_{2}{ }^{-}$	

A) 0
B) +1
C) +2
D) +3
E) +4

C17. The reaction between baking soda $\left(\mathrm{NaHCO}_{3}\right)$ and vinegar ($\sim 5 \%$ solution of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$) is endothermic with a $\Delta \mathrm{H}$ of $43.6 \mathrm{~kJ} / \mathrm{mol}$. An unknown mass of baking soda is added to 500 mL of vinegar in a lab that is at $23.5^{\circ} \mathrm{C}$ and 1 atm pressure and the temperature of the solution drops to $20.7^{\circ} \mathrm{C}$. What volume of CO_{2} gas is generated in this reaction?
Assume the density and specific heat of the vinegar are the same as those of water.
A) 2.45 L
B) 2.66 L
C) 2.89 L
D) 3.01 L
E) 3.27 L

C 18 . A novice lab assistant is asked to make a 6.00 molar solution of NaCl , so he weighs out 6.00 moles of NaCl and adds it to 1.00 L of water. The density of the resulting solution is $1.194 \mathrm{~g} / \mathrm{mL}$. What is the actual molarity of the solution?
A) 5.30
B) 5.70
C) 6.00
D) 6.30
E) 6.70

C19. Which of these could be the correct name for an orbital in molecular orbital theory?
A) $s p^{3}$
B) $3 p$
C) $\sigma^{*}{ }_{2 p}$
D) $\pi * 2 \mathrm{~s}$
E) $\pi_{1 \mathrm{~s}}$

C 20 . The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 0.0313 atm . What is the vapor pressure of water at $0^{\circ} \mathrm{C}$?
A) 4.18 torr
B) 5.28 torr
C) 14.4 torr
D) 18.0 torr
E) 21.9 torr

P01. According to Guillen, while Albert Einstein was in school, he read many books on his own instead of doing his schoolwork. An example of a collection of volumes that inspired the young Einstein is...
A) The Encyclopedia Brittanica
B) On the Origin of Species
C) English Men: their Nature and Nurture
D) Popular Books on Physical Sciences
E) The Principia Mathematica

P02. According to Guillen, James Maxwell's hypothesis that electromagnetic ripples and light waves might be one and the same was confirmed by an experiment that used a spark generator to produce electromagnetic waves. Which scientist performed this experiment?
A) Albert Einstein
B) Marie Curie
C) Heinrich Hertz
D) Thomas Young
E) Albert Michaelson

P03. According to Guillen, Einstein concluded that it was physically impossible for any material body to travel as fast as an electromagnetic wave. What mathematical result helped lead him to this conclusion?
A) mass goes to zero at the speed of light.
B) mass becomes infinite at the speed of light.
C) energy becomes zero at the speed of light.
D) energy is not conserved near the speed of light.
E) light slows down when passing through matter.

P04. You discover an average F-class main sequence star that has an apparent magnitude of +10.5 . Use this HR diagram to determine the approximate distance to the star. Note: 1.0 parsec equals 3.26 light-years.

A) around 2000 light-years
B) around 700 light-years
C) around 200 light-years
D) around 50 light-years
E) around 10 light-years

P05. What are the units of Z, which equals the square root of the product of the permittivity of free space and the permeability of free space?

$$
Z=\sqrt{\varepsilon_{0} \mu_{0}}
$$

A) s / m (seconds per meter)
B) N (Newtons)
C) Js (Joule*seconds)
D) kg / C (kilograms per Coulomb)
E) C/J (Coulombs per Joule)

P06. You throw a tennis ball from a point that is 2.00 m above the ground with a velocity of $16.0 \mathrm{~m} / \mathrm{s}$ at an angle of 56.0° above the horizontal. The ball hits the side of a brick building which is located 15.0 m horizontally in front of you. After it hits the building, the tennis ball bounces back at the same speed with which it hit the building, and with a bounce angle that is the same as the impact angle (as shown). How far from you, horizontally, does the ball land on the ground (x)?
A) 0.514 m
B) 1.29 m
C) 2.90 m
D) 4.50 m
E) 5.78 m

P07. A pulley system is set up to give a mechanical advantage to an Atwood-type machine, as shown. The upper pulley is fixed in place, but the lower pulley is free to move. A 6.00 kg mass is connected directly to the lower pulley and the mass and pulley move up and down together. A long rope connects to the fixed upper pulley, wraps around the lower pulley, goes over the top of the upper pulley, and is attached to a 5.00 kg hanging mass. When the system is released, what is the acceleration of the 5.00 kg mass? Assume the pulleys are frictionless and massless.
A) $0.891 \mathrm{~m} / \mathrm{s}^{2}$
B) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
C) $3.02 \mathrm{~m} / \mathrm{s}^{2}$
D) $3.56 \mathrm{~m} / \mathrm{s}^{2}$
E) $4.90 \mathrm{~m} / \mathrm{s}^{2}$

P08. A variable force acts in the x-direction on a 4.50 kg box, sliding it across the floor. The box slides from its starting location $(x=0)$ to a point six meters away ($x=6.00 \mathrm{~m}$). Along the way, the force decreases according to the equation $F=72-2 x^{2}$. What is the total work done by this force moving the box a distance of 6.00 m ?
A) 144 J
B) 288 J
C) 432 J
D) 648 J
E) 1296 J

P09. A merry-go-round is constructed by setting a 55.0 kg solid disk with a radius of 1.44 m on an axle with frictionless bearings. A person with a mass of 80.0 kg starts at the exact center of the merry-go round, and the merry-go-round is given an initial angular velocity of $32.0 \mathrm{rad} / \mathrm{s}$. The person then walks slowly to the edge of the merry-go-round. What is the angular velocity of the system after the person reaches the edge? Note: the moment of inertia of a solid disk is $I=\frac{1}{2} m r^{2}$.
A) $22.0 \mathrm{rad} / \mathrm{s}$
B) $17.5 \mathrm{rad} / \mathrm{s}$
C) $13.0 \mathrm{rad} / \mathrm{s}$
D) $11.0 \mathrm{rad} / \mathrm{s}$
E) $8.18 \mathrm{rad} / \mathrm{s}$

P10. A folk musician blows air across a 37.0 cm -tall bottle that functions as an open-closed pipe. The sound resonates at a frequency of 652 Hz , which is one harmonic above the fundamental. What is the temperature of the air in and around the bottle?
A) $-15.2^{\circ} \mathrm{C}$
B) $-7.70^{\circ} \mathrm{C}$
C) $0.00^{\circ} \mathrm{C}$
D) $7.9^{\circ} \mathrm{C}$
E) $16.1^{\circ} \mathrm{C}$

P11. Oil with a density of $840 \mathrm{~kg} / \mathrm{m}^{3}$ flows from an open container into a pipe. The level of oil in the container is $H=1.50 \mathrm{~m}$ above the pipe (as shown). The pipe starts with a diameter of 16.0 cm , narrows to a diameter of 14.0 cm , and then returns to a diameter of 16.0 cm before emptying the oil into an open-air pit. In the narrow section of the pipe, a small siphon tube containing air is connected to the pipe, and loops down into an open container of water. The entire setup is shown below. How far up into the siphon tube does the water rise (h)?
A) 179 cm
B) 150 cm
C) 126 cm
D) 106 cm
E) 89.0 cm

P12. In the circuit shown below, the current I is measured to be 104.3 mA , which is not what we would expect. Which of these possible problems explains the erroneous current measurement?

A) The 70.0Ω resistor is shorted (zero resistance)
B) The 70.0Ω resistor is open (infinite resistance)
C) The 45.0Ω resistor is shorted (zero resistance)
D) The 65.0Ω resistor is shorted (zero resistance)
E) The 65.0Ω resistor is open (infinite resistance)

P13. Determine the magnitude of the electric field at the point $P(0.0,25.0 \mathrm{~cm})$ due to the two charges shown: $\mathrm{Q}_{1}=12.0 \mathrm{nC}$ located at $(0.0,0.0)$ and $\mathrm{Q}_{2}=-18.0 \mathrm{nC}$ located at $(16.0 \mathrm{~cm}, 0.0)$
A) $3567 \mathrm{~N} / \mathrm{C}$
B) $2523 \mathrm{~N} / \mathrm{C}$
C) $1728 \mathrm{~N} / \mathrm{C}$
D) $1006 \mathrm{~N} / \mathrm{C}$
E) $110.8 \mathrm{~N} / \mathrm{C}$

P14. A rectangular wire loop is 5.0 cm wide and 8.0 cm tall. One side of the loop is hinged to a post. A current of $I=14.0$ A flows in the loop, and a magnetic field of $B=650 \mu \mathrm{~T}$ is directed perpendicular to the face of the loop. The setup is shown below. What is the net torque on the current-carrying loop due to the magnetic field?
A) 0.00 Nm
B) $3.64 \times 10^{-5} \mathrm{Nm}$
C) $5.82 \times 10^{-5} \mathrm{Nm}$
D) $4.55 \times 10^{-4} \mathrm{Nm}$
E) $7.28 \times 10^{-4} \mathrm{Nm}$

P15. A capacitor consists of two circular plates separated by 0.0200 mm . The plates have a diameter of 2.50 cm , and the voltage difference between the plates is 45.0 V . The capacitor is rapidly discharged in a time of $4.20 \mu \mathrm{~s}$. What is the strength of the magnetic field induced along the edge of the capacitor's plates as a result of the discharge?
A) 2.93 nT
B) 18.6 nT
C) 37.3 nT
D) 42.1 nT
E) 149 nT

P16. A reflecting telescope is constructed with a concave primary mirror that has a radius of curvature of 96.0 cm , a convex secondary mirror with a radius of curvature of 60.0 cm , and a converging lens with a focal length of 15.0 cm . The secondary mirror is placed 40.0 cm in front of the primary mirror, and the lens sits 5.0 cm behind the primary mirror. The telescope setup is illustrated below. Relative to the lens, where is the final image of a distant star located in this telescope?
A) 14.7 cm
B) 17.4 cm
C) 24.5 cm
D) 26.8 cm
E) 31.0 cm

P17. For the following wavefunction:

$$
\Psi=A(1+2 x) \quad 0<x<1
$$

What is the expectation value of position, $\langle x\rangle$?
A) 0.231
B) 0.353
C) 0.500
D) 0.654
E) 0.769

P18. Two radioactive isotopes are combined together in a mixture. The first isotope has a half-life of 15.4 minutes and an initial activity of $10.0 \mu \mathrm{Ci}$. The second isotope has a half-life of 24.8 minutes and an initial activity of $20.0 \mu \mathrm{Ci}$. After one hour, what is the total activity of the mixture?
A) $10.8 \mu \mathrm{Ci}$
B) $8.19 \mu \mathrm{Ci}$
C) $4.41 \mu \mathrm{Ci}$
D) $3.21 \mu \mathrm{Ci}$
E) $1.98 \mu \mathrm{Ci}$

P19. An object made from an unknown metal is weighed while completely submerged in various liquids. The weight measurement is plotted against the density of the liquid in which the object is submerged when weighed. Based on these data, determine the approximate density of the unknown metal.
A) $2 \mathrm{~g} / \mathrm{cm}^{3}$
B) $4 \mathrm{~g} / \mathrm{cm}^{3}$
C) $6 \mathrm{~g} / \mathrm{cm}^{3}$
D) $8 \mathrm{~g} / \mathrm{cm}^{3}$
E) $10 \mathrm{~g} / \mathrm{cm}^{3}$

P20. A $12.0 \mathrm{~V}_{\text {rms }}$ AC power supply, a variable resistance, and an unknown reactance are connected in series (as shown). As the resistance is varied, the phase of the current relative to the voltage is measured. The data are tabulated below. Based on these data, what is the value of the reactance?

Resistance	Phase of the Current
80.0Ω	61.9°
120Ω	51.3°
220Ω	34.3°
350Ω	23.2°

A) $|X|=37.7 \Omega$
B) $|\mathrm{X}|=75.0 \Omega$
C) $|X|=93.7 \Omega$
D) $|\mathrm{X}|=124 \Omega$
E) $|\mathrm{X}|=150 \Omega$

Ce 140.1	${ }_{140}^{59} \begin{gathered} \mathrm{Pr} \\ 140.9 \end{gathered}$	$\stackrel{60}{\mathrm{Na}} \mathrm{Nd}$	${ }_{(145)}^{61}$	$\underset{150.4}{62}$	${ }_{152.0}^{63}$	$\underset{157.3}{64}$	${\underset{158}{65}}_{\substack{65 \\ 158.9}}$	${ }^{66}$ Dy	Ho	${ }_{\underset{167.3}{68}}^{\mathrm{Er}}$	$\stackrel{\operatorname{Tm}_{168.9}^{69}}{ }$	Yb 173.0	$\underset{175.0}{\mathrm{Lu}_{1}}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231	238.0	(23)	(244)	(243)	(24)	(24)	(25	(252)	(25	(258)	(259)	(262)

Water Data
$T_{\text {mp }} \quad=0{ }^{\circ} \mathrm{C}$
$T_{\text {bp }}=100^{\circ} \mathrm{C}$
$c_{\text {cee }} \quad=2.09 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
$c_{\text {water }}=4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
$c_{\text {steam }}=2.03 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
$\Delta H_{\text {fus }}=334 \mathrm{~J} / \mathrm{g}$
$\Delta H_{\text {vap }}=2260 \mathrm{~J} / \mathrm{g}$
$K_{\mathrm{f}} \quad=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}$
$K_{\mathrm{b}} \quad=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}$
Constants
$R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$R=62.36 \mathrm{~L} \cdot$ torr $/ \mathrm{mol} \cdot \mathrm{K}$
$e=1.602 \times 10^{-19} \mathrm{C}$
$N_{\text {A }}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$R_{\mathrm{H}}=2.178 \times 10^{-18} \mathrm{~J}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$\mathscr{Y}=96,485 \mathrm{C} / \mathrm{mol} \mathrm{e}^{-}$
$1 \mathrm{amp}=1 \mathrm{C} / \mathrm{sec}$
$1 \mathrm{~mol} \mathrm{e}{ }^{-}=96,485 \mathrm{C}$

Helpful Information

Constants

$R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$R=62.36 \mathrm{~L} \cdot \mathrm{torr} / \mathrm{mol} \cdot \mathrm{K}$
$e=1.602 \times 10^{-19} \mathrm{C}$
$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$R_{\mathrm{H}}=2.178 \times 10^{-18} \mathrm{~J}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$\mathscr{F}=96,485 \mathrm{C} / \mathrm{mol} \mathrm{e}$
$1 \mathrm{amp}=1 \mathrm{C} / \mathrm{sec}$
$1 \mathrm{~mol} \mathrm{e} \mathrm{e}^{-}=96,485 \mathrm{C}$

Physics

Useful Constants

quantity	symbol	value
Free-fall acceleration	g	$9.80 \mathrm{~m} / \mathrm{s}^{2}$
Permittivity of Free Space	ε_{0}	$8.854 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$
Permeability of Free Space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$
Coulomb constant	k	$8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Fundamental charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Planck's constant	h	$6.626 \times 10^{-34} J s$
Electron mass	$\mathrm{m}_{\text {e }}$	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton mass	m_{p}	$\begin{gathered} 1.67265 \times 10^{-27} \mathrm{~kg} \\ 1.007276 \mathrm{amu} \end{gathered}$
Neutron mass	m_{n}	$\begin{gathered} 1.67495 \times 10^{-27} \mathrm{~kg} \\ 1.008665 \mathrm{amu} \end{gathered}$
Atomic Mass Unit	amu	$\begin{aligned} & 1.66 \times 10^{-27} \mathrm{~kg} \\ & 931.5 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Universal gas constant	R	$\begin{gathered} 8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\ 0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \end{gathered}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Speed of Sound (at $20^{\circ} \mathrm{C}$)	v	$343 \mathrm{~m} / \mathrm{s}$
Avogadro's number	$\mathrm{N}_{\text {A }}$	6.022×10^{23} atoms $/ \mathrm{mol}$
Electron Volts	eV	$1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}$
Distance Conversion	miles \rightarrow meters	1.00 mile $=1609$ meters
Rydberg Constant	R_{∞}	$1.097 \times 10^{7} \mathrm{~m}^{-1}$
Standard Atmospheric Pressure	1 atm	$1.013 \times 10^{5} \mathrm{~Pa}$
Density of Pure Water	$\rho_{\text {water }}$	$1000.0 \mathrm{~kg} / \mathrm{m}^{3}$

