Some High School Calculator Facts To Memorize

Get Ready
Get Set
GO!

1 hour =__minutes

April =__days

1 mile $=\ldots$ feet

$$
\begin{array}{ll|}
1 & \text { quart }=\ldots \text { pints } \\
1 \text { pint }=\ldots \quad \text { liquid ounces } & \mathbf{2} \\
1 \text { pound }(\operatorname{avdp})=\ldots \quad \text { ounces }(\operatorname{avdp}) & \mathbf{1 6} \\
\hline
\end{array}
$$

1 liter \approx ___ quarts
1 gallon $=\ldots$ cubic inches
1 mile/hour =
feet/second
π Radians $=$

1 meter =__centimeters

1 mile =__yards
1 cup =
ounces
$1 \mathrm{~km} / \mathrm{hr}=$
m / s

1 square foot $=$

1 cubic foot =
1 cubic yard = cubic feet

$$
1 \text { gallon }=\ldots \text { ounces }
$$

1 quart =__ ounces

Formula for area of a square

(side) ${ }^{2}$

Formula for area of circle

$\pi(\text { radius })^{2}$

Formula for perimeter of scalene triangle (side 1) + (side 2) + (side 3)

Formula for circumference of circle given diameter π (diameter)

Length of a football field (without end zones) 100 yards

Number of cards in a card deck 52

Formula for changing degrees Fahrenheit to degrees Centigrade ${ }^{\circ} \mathrm{C}=(5 / 9)\left({ }^{\circ} \mathrm{F}\right.$ - 32)

Pythagorean Formula for Right Triangle

$$
(\operatorname{leg} 1)^{2}+(\operatorname{leg} 2)^{2}=(\text { hypotenuse })^{2}
$$

Formula for Sine of an angle
(side opposite angle)/hypotenuse
Formula for Cosine of an angle
(side adjacent angle)/hypotenuse
Formula for Tangent of an angle
(side opposite angle)/(side adjacent angle)
Formula for perimeter of rhombus 4(side)

Formula for area of triangle given base and height. (1/2)(base)(height)

Formula for area of rhombus given both diagonals. (1/2)(diagonal 1)(diagonal 2)

Formula for area of trapezoid given both parallel bases and altitude.

(1/2)(base 1 + base 2)(altitude)

Formula for perimeter of equilateral triangle 3(side)
Formula for area of equilateral triangle given
a side
(side) ${ }^{2} \sqrt{3}$
4
Formula for area of equilateral triangle given an altitude (h)
$h^{2} \sqrt{3}$
3

Formula for area of a segment given radius (\mathbf{R}) and angle θ in radians

$(1 / 2) R^{2}(\theta-\sin \theta)$

Formula for area of sector given radius (\mathbf{R}) and angle θ in radians
(1/2) R ${ }^{2} \theta$
Formula for law of sines given angles A, B, C and sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Total number of degrees in a triangle Total number of radians in a triangle

Formula for area of isosceles triangle given base and altitude (1/2)(base)(altitude)
Formula for volume of sphere given radius

$$
\frac{4}{3} \pi(\text { radius })^{3}
$$

Formula for surface area of sphere given radius 4π (radius) 2

Formula for radius of circumscribed scalene triangle given sides \mathbf{a}, \mathbf{b}, and \mathbf{c}.

$$
\frac{a b c}{4(\Delta \text { area })}
$$

Formula for semiperimeter of scalene triangle given sides \mathbf{a}, \mathbf{b}, and \mathbf{c}.
$a+b+c$
2

Formula for volume of right cylinder given radius (R) and length (L).

Formula for total surface area of right cylinder given radius (R) and length (L)
$2 \pi R(R+L)$
Formula for volume of cube

Formula for lateral surface area of right cylinder given radius (\mathbf{R}) and length (L)

$2 \pi R L$

Formula for total surface area of hemisphere given radius (R).

$$
3 \pi \mathbf{R}^{2}
$$

Formula for surface area of cube 6(side) ${ }^{2}$

Formula for volume of any pyramid given base area and altitude

$$
\left(\frac{\text { altitude }}{3}\right) \times \text { (area of base) }
$$

Formula for diagonal of square given side (side) $\sqrt{2}$
Formula for perimeter of rectangle 2(length + width)

Formula for lateral surface area of a Square Base Pyramid given angle between slant height and base (α) and side length (a).

$$
\frac{a^{2}}{\cos \alpha} \sqrt{1+\sin ^{2} \alpha}
$$

Formula for area of square given diagonal (d).

Formula for area of rectangle

(length)(width)

Formula for perimeter of parallelogram given two adjacent sides 2(side 1 + side 2)

Formula for area of parallelogram given parallel sides and altitude (side)(altitude)

Formula for perimeter of square

Formula for area of scalene triangle with sides a, b, c and semiperimeter (s). \{Heron's formula\}

$$
\sqrt{s(s-a)(s-b)(s-c)}
$$

Formula for volume of frustrum of right circular cone given height (h), radius of lower base ($\mathbf{R}_{\mathbf{1}}$), radius of upper base ($\mathbf{R}_{\mathbf{2}}$).

$$
\frac{1}{3} \pi h\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}+\mathrm{R}_{1} \mathrm{R}_{2}\right)
$$

Formula for lateral surface area of frustrum of right circular cone given slant height (s), radius of lower base (\mathbf{R}_{1}), radius of upper base ($\mathbf{R}_{\mathbf{2}}$).

$$
\pi s\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)
$$

Formula for law of cosines given sides \mathbf{a}, \mathbf{b}, c and angle opposite side c.

$$
C^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Formula for total surface area of frustrum of right circular cone given slant height (s), radius of lower base (\mathbf{R}_{1}), radius of upper base ($\mathbf{R}_{\mathbf{2}}$).

$$
\pi\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}+\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{s}\right)
$$

Formula for volume of a right circular cone given radius (\mathbf{R}) and height (h).
$\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{~h}$

Formula for radius of circle inscribed in equilateral triangle
$\frac{(\text { side }) \sqrt{3}}{6}$

Formula for radius of circle circumscribed about an equilateral triangle
(side) $\sqrt{3}$ 3
Formula for altitude to hypotenuse (c) with
legs \mathbf{a} and \mathbf{b}.

Formula for radius of circle inscribed in right triangle with legs \mathbf{a}, \mathbf{b} and hypotenuse c.

$$
a+b-c
$$

2
Formula for radius of circle circumscribed about a right triangle with legs, a, b and hypotenuse c.

Formula for surface area of a right circular cone given radius (\mathbf{R}) and slant height (\mathbf{s}).

Formula for total surface area of a right circular cone given radius (\mathbf{R}) and slant height (s).

$$
\pi R(R+s)
$$

Formula for radius of circle inscribed in a scalene triangle given sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and semiperimeter (s).

Formula for constant acceleration (a) given initial velocity ($\mathbf{v}_{\mathbf{o}}$), final velocity (\mathbf{v}), initial time ($\mathbf{t}_{\mathbf{o}}$) and final time (\mathbf{t})

$$
a=\frac{v-v_{0}}{t-t_{0}}
$$

Formula for final velocity (v) given initial velocity ($\mathbf{v}_{\mathbf{o}}$), acceleration (\mathbf{a}), initial time $\left(\mathbf{t}_{\mathbf{o}}\right)$ and final time (\mathbf{t})

$$
v=v_{0}+a\left(t-t_{0}\right)
$$

Formula for final distance (d) given initial distance $\left(\mathbf{d}_{\mathbf{0}}\right)$, initial velocity $\left(\mathbf{v}_{\mathbf{o}}\right)$, final velocity (\mathbf{v}), acceleration (\mathbf{a}), initial time ($\mathbf{t}_{\mathbf{o}}$) and final time(\mathbf{t})

$$
d=d_{0}+v_{0}\left(t-t_{0}\right)+\frac{1}{2} a\left(t-t_{0}\right)^{2}
$$

Formula for maximum horizontal distance $\left(\mathbf{d}_{\text {HMax }}\right)$ given initial velocity ($\mathbf{v}_{\mathbf{o}}$) and launch angle (θ), with initial and final elevations equal.

$$
\frac{-v_{0}^{2} \sin (2 \theta)}{g}
$$

Formula for maximum vertical distance $\left(\mathbf{d}_{\text {vMax }}\right)$ given initial velocity ($\mathbf{v}_{\mathbf{o}}$) and launch angle (θ), with initial and final elevations equal.

$$
\frac{-v_{0}^{2} \sin ^{2} \theta}{2 g}
$$

Formula for launch angle (θ) given maximum vertical distance ($\mathbf{d}_{\text {vMax }}$) and maximum horizontal distance ($\mathbf{d}_{\text {HMax }}$) with initial and final elevations equal.

Formula for any vertical distance (cv) with initial and final elevations not equal given initial vertical distance ($\mathbf{d}_{\text {vo }}$), initial velocity $\left(\mathbf{v}_{\mathbf{o}}\right)$, launch angle (θ) and final time (\mathbf{t})

$$
d_{v}=d_{v o}+v_{o} t \sin \theta+\frac{1}{2} g t^{2}
$$

Formula for time of flight $\left(\mathbf{t}_{\mathrm{of}}\right)$ if initial and final elevations are equal and given initial velocity $\left(\mathbf{v}_{\mathbf{o}}\right)$ and launch angle $(\boldsymbol{\theta}) \mathbf{t}_{\mathrm{off}=\frac{-2 \mathbf{v}_{0} \sin \theta}{\mathbf{g}}}$ Formula for time of flight ($\mathbf{t}_{\text {of }}$) if initial and final elevations are not equal and given initial velocity ($\mathbf{v}_{\mathbf{o}}$) and launch angle ($\boldsymbol{\theta}$)

$$
\mathrm{t}_{\mathrm{of}}=\frac{\mathrm{d}_{\mathrm{h}_{\text {max }}}}{\mathrm{v}_{\mathrm{o}} \cos \theta}
$$

Formula for amount of simple interest (A) given the principal (\mathbf{P}), the number of invested periods (\mathbf{n}) and interest rate (\mathbf{i}) (per period)

$$
A=P(1+i)^{n}
$$

Formula for amount of compound interest (A) given the principal (\mathbf{P}), the number of invested periods (\mathbf{n}) and interest rate (\mathbf{i}) (per period), compounded (q) times per period

$$
A=P(1+i / q)^{n q}
$$

Formula for amount of continous
compound interest (\mathbf{A}) given the principal (\mathbf{P}), the interest rate (\mathbf{r}) and time (\mathbf{t})

$$
\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}
$$

Formula for the percent difference/change between quantities \mathbf{A} and \mathbf{B} where the first mentioned quantity (A) is the basis for comparison

$$
\text { (100) }\left[\frac{B}{A}-1\right]
$$

Formula for the percent error between an exact quantity (\mathbf{E}) and an approximate quantity (A)

$$
\text { (100) }\left[\frac{\mathrm{A}}{\mathrm{E}}-1\right]
$$

Formula for the percent increase between a small quantity (S) and larger quantity (L)

$$
(100)\left[\frac{\mathrm{L}}{\mathrm{~S}}-1\right]
$$

Formula for the percent decrease between a small quantity (S) and larger quantity (L)

