Some High School **Calculator Facts** To Memorize **Get Ready** Get Set

1 meter =	centimeters	100	
1 inch =	centimeters	2.54	
1 kilometer =	millimeters	1,000	<mark>0,000</mark>
1 mile =	yards		1760
1 cup =	ounces		8
1 km/hr =	m/s		5/18

1 square foot =	square inches)	144
1 cubic foot =	cubic inches			<mark>1728</mark>
1 cubic yard =	cub	ic feet		27
1 gallon =	ounces			128
1 quart =	ounces			32
gravity acceleration	n =	_ft/sec ²	<mark>-32</mark>	.174

Formula for area of a square

Formula for area of circle

Formula for perimeter of scalene triangle

(side 1) + (side 2) + (side 3)

Formula for circumference of circle given diameter $\pi(diameter)$

Length of a football field (without end zones) 100 yards

Number of cards in a card deck

Formula for changing degrees Fahrenheit to degrees Centigrade **°C = (5/9)(°F – 32)**

Pythagorean Formula for Right Triangle

(leg 1)² + (leg 2)² = (hypotenuse)²

52

Formula for Sine of an angle

(side opposite angle)/hypotenuse

Formula for Cosine of an angle

(side adjacent angle)/hypotenuse

Formula for Tangent of an angle

(side opposite angle)/(side adjacent angle)

Formula for perimeter of rhombus **4(side)**

Formula for area of triangle given base and height. (1/2)(base)(height)

Formula for area of rhombus given both diagonals. (1/2)(diagonal 1)(diagonal 2)

Formula for area of trapezoid given both parallel bases and altitude.

(1/2)(base 1 + base 2)(altitude)

Formula for perimeter of equilateral triangle 3(side)

Formula for area of equilateral triangle given a side

Formula for area of equilateral triangle given an altitude (h) $h^2 \sqrt{3}$ Formula for area of a segment given radius (**R**) and angle θ in radians $(1/2) R^2(\theta - \sin\theta)$

Formula for area of sector given radius (**R**) and angle θ in radians (1/2) $R^2\theta$

Formula for law of sines given angles A, B, C and sides a, b, c. sinA sinB sinC Total number of degrees in a triangle

Total number of radians in a triangle

Formula for area of isosceles triangle given

base and altitude

(1/2)(base)(altitude)

Formula for volume of sphere given radius

 $\frac{4}{3}\pi (radius)^3$

180

Formula for surface area of sphere given radius $4\pi (radius)^2$

Formula for radius of circumscribed scalene triangle given sides **a**, **b**, and **c**. **abc**

Formula for semiperimeter of scalene triangle given sides **a**, **b**, and **c**.

 $(\Delta area)$

Formula for volume of right cylinder given radius (**R**) and length (**L**).

Formula for total surface area of right cylinder given radius (**R**) and length (**L**)

2πR(R + L)

Formula for volume of cube

Formula for lateral surface area of right cylinder given radius (**R**) and length (**L**)

Formula for total surface area of hemisphere given radius (**R**). $3\pi \mathbf{R}^2$

Formula for surface area of cube

Formula for volume of any pyramid given base area and altitude

Formula for diagonal of square given side $(side)\sqrt{2}$

Formula for perimeter of rectangle

2(length + width)

Formula for lateral surface area of a Square Base Pyramid given angle between slant height and base (α) and side length (**a**).

Formula for area of square given diagonal (d).

Formula for area of rectangle

(length)(width)

Formula for perimeter of parallelogram given two adjacent sides **2(side 1 + side 2)**

Formula for area of parallelogram given parallel sides and altitude (side)(altitude)

Formula for perimeter of square

Formula for area of scalene triangle with sides **a**, **b**, **c** and semiperimeter (**s**). {Heron's formula} $\sqrt[\sqrt{s(s-a)(s-b)(s-c)}]$

Formula for volume of frustrum of right circular cone given height (**h**), radius of lower base (\mathbf{R}_1), radius of upper base (\mathbf{R}_2).

$$\frac{1}{3}\pi h \Big(R_1^2 + R_2^2 + R_1 R_2 \Big)$$

Formula for lateral surface area of frustrum of right circular cone given slant height (**s**), radius of lower base (\mathbf{R}_1), radius of upper base (\mathbf{R}_2). $\pi s(\mathbf{R}_1 + \mathbf{R}_2)$

Formula for law of cosines given sides **a**, **b**,

c and angle opposite side c.

$$C^2 = a^2 + b^2 - 2abcosC$$

Formula for total surface area of frustrum of right circular cone given slant height (s), radius of lower base (\mathbf{R}_1), radius of upper base (\mathbf{R}_2). $\pi(\mathbf{R}_1^2 + \mathbf{R}_2^2 + (\mathbf{R}_1 + \mathbf{R}_2)\mathbf{s})$

Formula for volume of a right circular cone given radius (**R**) and height (**h**).

Formula for radius of circle inscribed in equilateral triangle (side)

Formula for radius of circle circumscribed about an equilateral triangle (side)

Formula for altitude to hypotenuse (c) with legs a and b.

Formula for radius of circle inscribed in right triangle with legs **a**, **b** and hypotenuse

Formula for radius of circle circumscribed about a right triangle with legs, **a**, **b** and hypotenuse **c**.

С.

Formula for surface area of a right circular cone given radius (**R**) and slant height (**s**).

Formula for total surface area of a right circular cone given radius (**R**) and slant height (**s**).

Formula for radius of circle inscribed in a scalene triangle given sides **a**, **b**, **c**, and semiperimeter (**s**).

Formula for constant acceleration (**a**) given initial velocity (\mathbf{v}_o), final velocity (\mathbf{v}), initial time (\mathbf{t}_o) and final time(\mathbf{t}) **v**-**v**.

Formula for final velocity (**v**) given initial velocity (\mathbf{v}_o), acceleration (**a**), initial time (\mathbf{t}_o) and final time(**t**) $\mathbf{v} = \mathbf{v}_o + \mathbf{a}(\mathbf{t} - \mathbf{t}_o)$ Formula for final distance (**d**) given initial distance (\mathbf{d}_o), initial velocity (\mathbf{v}_o), final velocity (\mathbf{v}), acceleration (**a**), initial time (\mathbf{t}_o) and final time(\mathbf{t})

$$d = d_{o} + v_{o}(t - t_{o}) + \frac{1}{2}a(t - t_{o})^{2}$$

Formula for maximum horizontal distance (\mathbf{d}_{HMax}) given initial velocity (\mathbf{v}_o) and launch angle (θ) , with initial and final elevations equal.

Formula for maximum vertical distance (\mathbf{d}_{VMax}) given initial velocity (\mathbf{v}_o) and launch angle $(\mathbf{\theta})$, with initial and final elevations equal.

Formula for launch angle (θ) given maximum vertical distance (\mathbf{d}_{VMax}) and maximum horizontal distance (\mathbf{d}_{HMax}) with initial and final elevations equal.

Formula for any vertical distance (dv) with initial and final elevations not equal given initial vertical distance (d_{vo}), initial velocity (v_o), launch angle (θ) and final time (t)

$$d_v = d_{vo} + v_o tsin\theta + \frac{1}{2}gt^2$$

Formula for time of flight (\mathbf{t}_{of}) if initial and final elevations are equal and given initial velocity (\mathbf{v}_{o}) and launch angle (θ) $\mathbf{t}_{of} = \frac{-2\mathbf{v}_{o}\sin\theta}{\mathbf{r}_{of}}$

Formula for time of flight (t_{of}) if initial and final elevations are not equal and given initial velocity (v_o) and launch angle (θ)

g

Formula for amount of simple interest (A) given the principal (P), the number of invested periods (n) and interest rate (i) (per period) $A = P(1 + i)^{n}$ Formula for amount of compound interest (A) given the principal (P), the number of invested periods (n) and interest rate (i) (per period), compounded (q) times per period $A = P(1 + i/q)^{nq}$

Formula for amount of continous compound interest (**A**) given the principal (**P**), the interest rate (**r**) and time (**t**). Formula for the percent difference/change between quantities **A** and **B** where the first mentioned quantity (**A**) is the basis for comparison

Formula for the percent error between an exact quantity (E) and an approximate quantity (A) $\frac{100}{E} \frac{A}{E} - 1$

Formula for the percent increase between a small quantity (S) and larger quantity (L)

Formula for the percent decrease between a small quantity (S) and larger quantity (L)

